

January 31, 2025

Subject:

2024 Annual Groundwater Monitoring and Corrective Action Report JH Cambell Power Plant Pond A

Enclosures:

Document	Date
CCR Annual Groundwater Report Requirements: § 257.90(e) Checklist for the JH Campbell Pond A CCR Unit	January 31, 2025
2024 Annual Groundwater Monitoring and Corrective Action Report, JH Campbell Power Plant Pond A CCR Unit. (TRC, January 31, 2025)	January 31, 2025

The attached document(s) are prepared in conformance with:

Document	Date
§257.90(e) of 40 CFR Part 257, Standards for	April 17, 2015
the Disposal of Coal Combustion Residuals in	
Landfills and Surface Impoundments, under	
Subpart D of the Resource Conservation and	
Recovery Act (RCRA)	

CCR Annual Groundwater Report Requirements: § 257.90(e) Checklist for the JH Campbell Pond A CCR Unit 2024 Annual Report

Requirement	Reference
At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available: (1) A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;	Figure 2 ⁽¹⁾
(2) Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;	Section 2.1 ⁽¹⁾ Note: No monitoring wells were installed or decomissioned during 2024.
(3) In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;	Section 2.2 ⁽¹⁾ , Tables 3 and 4 ⁽¹⁾
	Section 1.1 ⁽¹⁾ Note: CCR unit remains in Assessment Monitoring and Corrective Measures
(5) Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.	Section 2.0 ⁽¹⁾ , Section 3.0 ⁽¹⁾ , Section 4.0 ⁽¹⁾
 (6) A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following: (i) At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95; 	Section 1.0 ⁽¹⁾
(ii) At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;	Section 1.0 ⁽¹⁾
(iii) If it was determined that there was a statistically significant increase over background for one or more constituents listed in appendix III to this part pursuant to § 257.94(e):	
(A) Identify those constituents listed in appendix III to this part and the names of the monitoring wells associated with such an increase; and	Section 1.1 ⁽¹⁾
(B) Provide the date when the assessment monitoring program was initiated for the CCR unit.	Section 1.1 ⁽¹⁾
(iv) If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in appendix IV to this part pursuant to § 257.95(g) include all of the following:	
(A) Identify those constituents listed in appendix IV to this part and the names of the monitoring wells associated with such an increase;	Section 1.1 ⁽¹⁾ , Section 4.2 ⁽¹⁾
(B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;	Section 1.1 ⁽¹⁾
(C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and	Not Applicable; Final remedy selection in progress
(D) Provide the date when the assessment of corrective measures was completed for the CCR unit.	Section 4.2 ⁽¹⁾
(v) Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and	Section 4.3 ⁽¹⁾ Note: Final remedy selection in progress
(vi) Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.	Not Applicable; Final remedy selection in progress

Notes

(1) 2024 Annual Groundwater Monitoring and Corrective Action Report JH Campbell Power Plant Pond A CCR Unit. TRC. January 31, 2025.

2024 Annual Groundwater Monitoring and Corrective Action Report

JH Campbell Power Plant Pond A CCR Unit

West Olive, Michigan

January 2025

Sarah B. Holmstrom, P.G.

Project Manager/Sr. Hydrogeologist

Prepared For:

Consumers Energy Company

Prepared By:

TRC 1540 Eisenhower Place Ann Arbor, Michigan 48108

Graham Crookford, C.P.G

Program Manager

TABLE OF CONTENTS

Exe	cutive	Summary	iii
1.0	Intro	oduction	1
	1.1		
		Program Summary	
	1.2 1.3	Geology/Hydrogeology	
2.0	Gro	undwater Monitoring	4
	2.1	Monitoring Well Network	
	2.2	Semiannual Groundwater Monitoring	
		2.2.1 Data Summary	
		2.2.2 Data Quality Review	
		2.2.3 Groundwater Flow Rate and Direction	
3.0	Stat	istical Evaluation	7
	3.1	Establishing Groundwater Protection Standards	7
	3.2	Data Comparison to Groundwater Protection Standards	
4.0	Corr	rective Action	9
	4.1	Nature and Extent Groundwater Sampling	9
	4.2	Assessment of Corrective Measures	
	4.3	Remedy Selection	.10
5.0	Con	clusions and Recommendations	.12
6.0	Refe	erences	.13
TAE	BLES		
Tabl Tabl		Summary of Groundwater Elevation Data Summary of Field Parameter Results	
Tabl		Summary of Background Well Groundwater Sampling Results (Analytical)	
Tabl		Summary of Pond A Groundwater Sampling Results (Analytical)	
Tabl Tabl		Summary of Groundwater Protection Standard Exceedances – April 2024 Summary of Groundwater Protection Standard Exceedances – October 2024	
Tabl		Summary of Nature and Extent Groundwater Sampling Results (Analytical)	

FIGURES

Figure 1 Site Location Map

Figure 2 Site Plan with CCR Monitoring Well Locations Figure 3 Groundwater Contour Map – April 2024 Figure 4 Groundwater Contour Map – October 2024

APPENDICES

Appendix A Laboratory and Field Data Appendix B Data Quality Reviews

Appendix C April 2024 Assessment Monitoring Statistical Evaluation
Appendix D October 2024 Assessment Monitoring Statistical Evaluation

Appendix E Semiannual Progress Report

Executive Summary

On behalf of Consumers Energy, TRC has prepared this report for the JH Campbell Pond A Coal Combustion Residual (CCR) unit to cover the period of January 1, 2024 to December 31, 2024. Pond A was in assessment monitoring at the beginning and at the end of the period covered by this report. Data that have been collected and evaluated in 2024 are presented in this report.

Consumers Energy first reported the potential for statistically significant increases (SSIs) for Appendix III constituents in the *Annual Groundwater Monitoring Report, JH Campbell Power Plant, Pond A CCR Unit*. The statistical evaluation of the Appendix III indicator parameters confirming SSIs over background were as follows:

- Boron at JHC-MW-15006, JHC-MW-15007, JHC-MW-15008, JHC-MW-15009, JHC-MW-15010, and JHC-MW-15011; and
- Sulfate at JHC-MW-15006, JHC-MW-15007, JHC-MW-15008, JHC-MW-15009, JHC-MW-15010, and JHC-MW-15011

On April 25, 2018, Consumers Energy entered assessment monitoring upon determining that an Alternate Source Demonstration for the Appendix III constituents was not successful. After subsequent sampling for Appendix IV constituents, Consumers Energy provided notification in the *Notification of Appendix IV Constituent Exceeding Groundwater Protection Standard per §257.95(g)* that arsenic was present at statistically significant levels above the federal groundwater protection standard (GWPS) established at 10 ug/L in one out of six downgradient monitoring wells at Pond A as follows:

■ Arsenic at JHC-MW-15011.

The Assessment of Corrective Measures (ACM) was initiated on April 14, 2019, and was certified and submitted to the Michigan Department of Environment, Great Lakes, and Energy (EGLE) on September 11, 2019, in accordance with the schedule in §257.96.

The ACM documents that the groundwater nature and extent has been defined, as required in §257.95(g)(1). Although arsenic concentrations exceed the GWPS in on-site groundwater, the property containing the site is owned and operated by Consumers Energy and on-site groundwater is not used for drinking water. Per §257.96(b), Consumers Energy is continuing to monitor groundwater in accordance with the assessment monitoring program as specified in §257.95. Overall, the assessment monitoring statistical evaluations show arsenic concentrations are declining and confirm that arsenic is the only Appendix IV constituent present at statistically significant levels above the federal GWPS. Groundwater monitoring downgradient from Pond A further demonstrates that there are currently no adverse effects on human health or the environment from either surface water or groundwater due to the CCR management at Pond A.

Remedy selection for Pond A, prescribed by the CCR Rule, is being undertaken in coordination with the EGLE Consent Agreement WMRPD No. 115-01-2018, which was executed on December 28, 2018. The January 2025 semiannual progress report describing the progress in selecting and designing the remedy required pursuant to §257.97(a) is included in this report. As documented in the *Pond A Construction Documentation and Certification Report*, Pond A was closed with final cover in place in the summer of 2019.

The general decrease in arsenic concentrations suggest that the pond closure continues to have an observable impact on groundwater quality. Changing concentrations indicate that the system is establishing a new equilibrium following source removal and that an alternate source is impacting groundwater monitoring in the Pond A well network. The groundwater management remedy for Pond A will be selected as soon as feasible to, at a minimum, meet the federal standards of §257.97(b) of the CCR Rule. Consumers Energy will continue executing the self-implementing groundwater compliance schedule in conformance with §257.90 - §257.98, which includes semiannual assessment monitoring in accordance with §257.95 to monitor site groundwater conditions and inform the remedy selection. The next semiannual assessment monitoring events are scheduled to occur in the second and fourth calendar quarters of 2025.

1.0 Introduction

On April 17, 2015, the United States Environmental Protection Agency (USEPA) published the final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) (the CCR Rule) (USEPA, April 2015 as amended). Standards for groundwater monitoring and corrective action codified in the CCR Rule (40 CFR 257.90 – 257.98), apply to the Consumers Energy Company (Consumers Energy) Pond A CCR Unit at the JH Campbell Power Plant Site (Pond A). Pursuant to the CCR Rule, no later than January 31, 2018, and annually thereafter, the owner or operator of a CCR unit must prepare an annual groundwater monitoring and corrective action report for the CCR unit documenting the status of groundwater monitoring and corrective action for the preceding year in accordance with §257.90(e).

On behalf of Consumers Energy, TRC has prepared this Annual Groundwater Monitoring Report for Pond A to cover the period of January 1, 2024 to December 31, 2024. Pond A was in assessment monitoring at the beginning and at the end of the period covered by this report. Data that have been collected and evaluated in 2024 under §257.90 - §257.98 are presented in this report.

1.1 Program Summary

Consumers Energy first reported the potential for statistically significant increases (SSIs) for Appendix III constituents in the *Annual Groundwater Monitoring Report, JH Campbell Power Plant, Pond A CCR Unit* (TRC, January 2018). The statistical evaluation of the Appendix III indicator parameters confirming SSIs over background were as follows:

- Boron at JHC-MW-15006, JHC-MW-15007, JHC-MW-15008, JHC-MW-15009, JHC-MW-15010, and JHC-MW-15011; and
- Sulfate at JHC-MW-15006, JHC-MW-15007, JHC-MW-15008, JHC-MW-15009, JHC-MW-15010, and JHC-MW-15011.

As discussed in the 2018 Annual Groundwater Monitoring Report for the JH Campbell Power Plant Pond A CCR Unit (2018 Annual Report) (TRC, January 2019), Consumers Energy initiated an Assessment Monitoring Program for Pond A pursuant to §257.95 of the CCR Rule on April 25, 2018 upon determining that an Alternate Source Demonstration for the Appendix III constituents was not successful. After subsequent sampling for Appendix IV constituents, Consumers Energy provided notification in the Notification of Appendix IV Constituent Exceeding Groundwater Protection Standard per §257.95(g) (Consumers Energy, January 2019) that arsenic was present at statistically significant levels above the federal groundwater protection standard (GWPS) established at 10 ug/L in one out of the six downgradient monitoring wells at Pond A as follows:

Arsenic at JHC-MW-15011.

The CCR Rule 40 CFR §257.96(a) requires that an owner or operator initiate an assessment of corrective measures to prevent further release, to remediate any releases, and to restore impacted areas to original conditions if any Appendix IV constituent has been detected at a statistically significant level exceeding a GWPS. The Assessment of Corrective Measures

(ACM) (TRC, September 2019) was initiated on April 14, 2019, and was certified and submitted on September 11, 2019, in accordance with the schedule in §257.96.

The ACM documents that the groundwater nature and extent has been defined, as required in §257.95(g)(1), based on the site-specific hydrogeology and data collected from existing monitoring wells. Although arsenic concentrations exceed the GWPS in on-site groundwater, an evaluation of risk demonstrates that there are currently no adverse effects on human health or the environment from either surface water or groundwater due to CCR management at Pond A. In addition, Pond A was closed with final cover in place in the summer of 2019.

The groundwater management remedy for Pond A will be selected as soon as feasible to, at a minimum, meet the federal standards of §257.97(b) of the CCR Rule. Consumers Energy will continue executing the self-implementing groundwater compliance schedule in conformance with §257.90 - §257.98, which includes semiannual assessment monitoring in accordance with §257.95. In addition to the semiannual assessment monitoring performed in accordance with §257.95, Consumers Energy is also conducting quarterly monitoring in accordance with the *Pond A Hydrogeological Monitoring Plan, JH Campbell Power Plant, West Olive, Michigan* (Pond A HMP) (TRC, March 2019; Revised July 2019), which includes the *Pond A Assessment Monitoring Plan* (Pond A AMP). Quarterly monitoring results are reported under a separate cover in accordance with the requirements of the Michigan Natural Resources and Environmental Protection Act, also known as Part 115 of PA 451 of 1994, as amended (a.k.a., Michigan Part 115 Solid Waste Management) and the Pond A HMP. This report covers the semiannual assessment monitoring performed in accordance with §257.95.

1.2 Site Overview

The JH Campbell Power Plant is a coal fired power generation facility located in West Olive, Michigan, on the eastern shore of Lake Michigan. It is bordered by the Pigeon River on the south, 156th Avenue on the east, and Croswell Street to the north with Lakeshore Drive bisecting the site from north to south. The power generating plant consists of three coal fired electric generating units located on the western side of the site and the CCR disposal area is on the east side of the site, east of Lakeshore Drive. Figure 1 is a site location map showing the facility and the surrounding area.

Currently, there are no remaining active CCR surface impoundments at the JH Campbell solid waste disposal facility. The CCR surface impoundments located within the former wet ash pond area are Pond 1-2 North and Pond 1-2 South Bottom Ash Ponds (collectively Ponds 1-2), Pond 3 North and Pond 3 South Bottom Ash Pond (collectively Pond 3), and Pond A. Site features are shown on Figure 2.

The surface impoundments in the wet ash pond areas were decommissioned starting in 2017 and replaced with concrete bottom ash treatment tanks. Dry ash from all of the generating units is stored in silos until it is placed into the Dry Ash Landfill or is sold and shipped off site. This report focuses on the Pond A CCR unit.

1.3 Geology/Hydrogeology

Groundwater is typically encountered at elevations ranging from 604 feet near the background wells (located to the north/northwest of the Dry Ash Landfill) to 590 feet along the southeast corner of the Dry Ash Landfill and south of the former Ponds 1-2 and Pond A CCR surface impoundments and generally flows to the south-southeast toward the Pigeon River. The subsurface materials encountered at the JH Campbell site generally consist of approximately 40 to 60 feet of poorly graded, fine-grained lacustrine sand. A laterally extensive clay-rich till is generally encountered within approximately 40 to 60 feet below ground surface (ft bgs) across the site that according to deep drilling logs conducted at the JH Campbell Power Plant (just west of the CCR units) is on the order of 80 feet thick and extends to the top of shale bedrock approximately 140 ft bgs.

2.0 Groundwater Monitoring

2.1 Monitoring Well Network

In accordance with 40 CFR 257.91, Consumers Energy established a groundwater monitoring system for Pond A, which currently consists of 11 monitoring wells (6 background monitoring wells and 5 downgradient monitoring wells) that are screened in the uppermost aquifer. The monitoring well locations are shown on Figure 2.

Six monitoring wells located north-northwest of the Dry Ash Landfill provide data on background groundwater quality that has not been affected by the CCR units (JHC-MW-15023 through JHC-MW-15028). Background groundwater quality data from these six background wells are additionally used for the CCR groundwater monitoring program at three other JH Campbell CCR units.

As documented in the 2021 Annual Groundwater Monitoring and Corrective Action Report for the JH Campbell Power Plant Pond A CCR Unit (2021 Annual Report) (TRC, January 2022), the groundwater flow direction changed significantly following permanent discontinuation of hydraulic loading in June 2018 and completion of the final cover installation in 2019 such that groundwater mounding is no longer observed around Pond A and groundwater has equilibrated to a lower static water elevation. As a result, replacement monitoring wells JHC-MW-15007R, JHC-MW-15009R, and JHC-MW-15011R were installed and monitoring wells JHC-MW-15007, JHC-MW-15009, JHC-MW-15010, and JHC-MW-15011 were decommissioned in July 2021. The groundwater monitoring network certification was included in the 2021 Annual Report. The Pond A monitoring well network currently includes five downgradient wells (JHC-MW-15006, JHC-MW-15007R, JHC-MW-15008R, JHC-MW-15009R, and JHC-MW-15011R) located south and southeast of Pond A.

No changes were made to the Pond A monitoring well network in 2024.

As shown on Figure 2, monitoring wells JHC-MW-15029 and JHC-MW-15030 are used for water level measurements only. Static water level data are collected at additional wells throughout the JH Campbell CCR units and used to construct a site-wide groundwater contour map.

2.2 Semiannual Groundwater Monitoring

Per §257.95, all wells in the CCR unit monitoring program must be sampled at least semiannually. One semiannual event must include analysis for all constituents from Appendix III and Appendix IV and one semiannual event may include analysis for all constituents in Appendix III and those constituents in Appendix IV of the CCR Rule that were detected during prior sampling. In addition to the Appendix III and IV constituents, field parameters including dissolved oxygen, oxidation reduction potential, specific conductivity, temperature, and turbidity were collected at each well. Samples were collected and analyzed in accordance with the Sample and Analysis Plan for JH Campbell Power Plan Pond A (SAP) (TRC, January 2021).

2.2.1 Data Summary

The first semiannual groundwater assessment monitoring event for 2024 was performed on April 15 through 17, 2024 and the second semiannual groundwater assessment monitoring event for 2024 was performed on October 14 through 16, 2024. Both events were performed by Consumers Energy. Samples were analyzed by Consumers Energy Laboratory Services in Jackson, Michigan, with radium samples analyzed by Eurofins Environmental Testing in Earth City, Missouri, in accordance with the SAP. Static water elevation data were collected at all monitoring well locations. Groundwater samples were collected from the background monitoring wells and Pond A monitoring wells for the Appendix III and Appendix IV constituents and field parameters.

A summary of the groundwater data collected during the April and October 2024 events are provided on Table 1 (static groundwater elevation data), Table 2 (field data), Table 3 (background well analytical results), and Table 4 (Pond A analytical results). Sample data, including laboratory reports and field data, are included in Appendix A.

2.2.2 Data Quality Review

Data from each round were evaluated for completeness, overall quality and usability, methodspecified sample holding times, precision and accuracy, and potential sample contamination. The data were found to be complete and usable for the purposes of the CCR monitoring program. The data quality reviews are summarized in Appendix B.

2.2.3 Groundwater Flow Rate and Direction

Groundwater elevation data collected site-wide during the 2024 semiannual assessment monitoring events were generally similar to data collected previously since the background sampling events commenced in December 2015. The data showed that groundwater within the uppermost aquifer generally flows to the south-southeast across the site, with a southwesterly groundwater flow component on the western edge of the site. Groundwater flow in the immediate vicinity of Pond A is predominately toward the south-southeast, consistent with previous assessment monitoring events completed after pond closure. The groundwater mounding previously observed in the immediate vicinity of Pond A early on in the program is no longer apparent subsequent to completing decommissioning activities in Summer 2019.

Groundwater elevations measured across the site during the April and October 2024 events are provided on Table 1. April and October 2024 groundwater elevations were used to construct the groundwater contour maps provided on Figure 3 and Figure 4, respectively. The average hydraulic gradient for each sampling event was calculated using the following well pairs: JHC-MW-15026/PZ-23S, JHC-MW-15017/PZ-24S, and JHC-MW-15024/JHC-MW-15031 (Figure 2). The average hydraulic gradient was 0.0036 ft/ft in April 2024 and 0.0034 in October 2024. Using the mean hydraulic conductivity of 62 ft/day (ARCADIS, 2016) and an assumed effective porosity of 0.4, the estimated average seepage velocity is approximately 0.55 ft/day or 200 ft/year for the April 2024 event, and approximately 0.53 ft/day or 190 ft/year for the October 2024 event.

The general groundwater flow direction is similar to that identified in previous monitoring rounds and continues to demonstrate that the downgradient wells are appropriately positioned to detect the presence of Appendix IV constituents that could potentially migrate from Pond A.

3.0 Statistical Evaluation

Assessment monitoring is continuing at Pond A, while corrective measures are further evaluated in accordance with §257.96 and §257.97 as outlined in the ACM. The following section summarizes the statistical approach applied to assess the 2024 groundwater data in accordance with the assessment monitoring program. The statistical evaluation details are provided in Appendix C (Statistical Evaluation of April 2024 Assessment Monitoring Sampling Event) and Appendix D (Statistical Evaluation of October 2024 Assessment Monitoring Sampling Event).

3.1 Establishing Groundwater Protection Standards

The federal Appendix IV GWPSs are used to assess whether Appendix IV constituent concentrations are present in groundwater at unacceptable levels as a result of CCR Unit operations by statistically comparing concentrations in the downgradient wells to the GWPSs for each Appendix IV constituent. The calculation of the GWPSs is documented in the Groundwater Protection Standards technical memorandum included in Appendix C of the 2018 Annual Report.

3.2 Data Comparison to Groundwater Protection Standards

Consistent with the *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance* (Unified Guidance) (USEPA, 2009), the preferred method for comparisons to a fixed standard are confidence limits. An exceedance of the standard occurs when the 99 percent lower confidence limit of the downgradient data exceeds the GWPS. As documented in the January 14, 2019 *Notification of Appendix IV Constituent Exceeding Groundwater Protection Standard per* §257.95(g), arsenic was present at statistically significant levels above the GWPSs in one of the downgradient wells at Pond A based on the statistical data comparison for the initial semiannual assessment monitoring event (June 2018). Therefore, Consumers Energy initiated the ACM. Assessment monitoring is ongoing.

Arsenic was identified at downgradient monitoring well JHC-MW-15011 at statistically significant levels exceeding the GWPS during the initial assessment monitoring event conducted in June 2018. Arsenic at JHC-MW-15011/R (combined dataset from the original well and the replacement well as denoted by the "/R") continued to be present at statistically significant levels at or above the GWPS through second quarter 2021. As shown in the data tables and trend tests included in Appendix B and Appendix C, arsenic concentrations at JHC-MW-15011/R declined in 2020 and 2021 such that the arsenic concentration at JHC-MW-15011R was below the GWPS in fourth quarter 2021 and second quarter 2022 and the lower confidence limit (LCL) for JHC-MW-15011/R has been below the GWPS since the second semiannual event of 2021. A slight rebound was observed in 2022, with the fourth quarter 2022 arsenic concentration being slightly above the GWPS; however, the second quarter 2023 through fourth quarter 2024 arsenic concentrations were once again below the GWPS and the LCL remains below the GWPS. No other Appendix IV constituents have been detected at statistically significant levels above the GWPS. Select Appendix IV constituents, including arsenic at JHC-MW-15006 and selenium at JHC-MW-15009R and JHC-MW-15011R, have been detected at concentrations above the GWPS; however, these detections are not statistically significant, i.e., the LCL

remains below the GWPS.

The statistical data comparison for the April 2024 (Appendix C) and October 2024 (Appendix D) semiannual assessment monitoring events indicate that no Appendix IV constituents were present at statistically significant levels exceeding the GWPSs.

The decrease in arsenic concentrations since 2019 demonstrates the effectiveness of the cap on addressing the arsenic concentrations associated with operations at Pond A. However, as the groundwater flow regime has changed and Pond A has been dewatered with site conditions stabilized through capping, changes in groundwater concentrations for Appendix III and Appendix IV constituents within the Pond A monitoring network associated with influence from historical Ponds B-K are being observed post-closure. Trends continue to be monitored and statistical significance relative to applicable GWPSs continues to be evaluated during the post-closure period as groundwater continues to reach its new equilibrium and groundwater travel times allow upgradient Ponds B-K groundwater to fully reach the entire Pond A well network.

A summary of the confidence intervals for April 2024 and October 2024 are provided in Table 5 and Table 6, respectively.

4.0 Corrective Action

Consumers Energy provided notification in January 2019 that arsenic was present at statistically significant levels above the federal GWPS established at 10 ug/L in one out of the six downgradient monitoring wells at Pond A as follows:

Arsenic at JHC-MW-15011.

The CCR Rule 40 CFR §257.96(a) requires that an owner or operator initiate an assessment of corrective measures to prevent further release, to remediate any releases, and to restore impacted areas to original conditions if any Appendix IV constituent has been detected at a statistically significant level exceeding a GWPS. The ACM was initiated on April 14, 2019, and was certified and submitted to the EGLE on September 11, 2019, in accordance with the schedule in §257.96.

4.1 Nature and Extent Groundwater Sampling

Per §257.95(g)(1), in the event that the facility determines, pursuant to §257.93(h), that there is a statistical exceedance of the GWPSs for one or more of the Appendix IV constituents, the facility must characterize the nature and extent of the release of CCR as well as any site conditions that may affect the remedy selected. The nature and extent data consist of Appendix III and IV constituents collected from the background and downgradient CCR monitoring well networks and from supplemental downgradient wells in the Pond A HMP monitoring well network. Nature and extent sampling in 2024 included shallow temporary step-out wells TW-19-05 and TW-19-06A in addition to wells and parameters monitored as part of the Pond A HMP and nature and extent sampling program at MW-14S, PZ-23S, PZ-24, PZ-24S, PZ-40, and PZ-40S. Locations of the monitoring wells used for nature and extent groundwater sampling are shown on Figure 2. A summary of the nature and extent groundwater data collected in 2024 are provided on Table 7. The soil boring logs and well construction diagrams for the step out monitoring wells utilized for the nature and extent groundwater sampling are included in the 2019 Annual Groundwater Monitoring and Corrective Action Report and Fourth Quarter 2019 Hydrogeological Monitoring Report, JH Campbell Power Plant, Pond A CCR Unit (2019 Annual Report) (TRC, January 2020).

As discussed in the ACM, the nature and extent of contamination (e.g. arsenic in groundwater) relative to GWPSs has been defined per the RCRA CCR Rule requirements based on the site-specific hydrogeology. The presence of nearby surface water bodies (Recirculation Pond and the Pigeon River) as well as the unimpacted background monitoring wells to the north provide the boundaries for the extent of the GWPS exceedances. This was further confirmed by the additional 2021 grab groundwater sampling data that shows arsenic is well below the GWPS at all five of the soil boring locations immediately downgradient from Pond A as detailed in the 2021 Annual Report. In addition, the underlying clay unit prevents the downward vertical migration of groundwater. Although Michigan Part 201 residential drinking water criteria are exceeded, there are no onsite drinking water wells downgradient from Pond A and the closest downgradient drinking water wells are located south and east of the Pigeon River, separated hydraulically by the river. Shallow groundwater has the potential to vent to nearby surface water boundaries that are not used for drinking water. Although several Appendix III and IV

constituents exceed the Michigan Part 201 generic groundwater-surface water interface (GSI) criteria in on-site wells, compliance for the GSI pathway is currently met based on data collected from the supplemental Pond A HMP wells and the National Pollutant Discharge Elimination System (NPDES) outfall at the Recirculation Pond. Compliance for the GSI pathway will continue to be monitored in accordance with the EGLE-approved Pond A AMP.

4.2 Assessment of Corrective Measures

The ACM was submitted on September 11, 2019, as a step towards developing a final remedy.

Several groundwater remediation alternatives evaluated in the ACM are considered technically feasible to reduce on-site groundwater concentrations. The following corrective measures were retained for further evaluation in conjunction with closure in place for Pond A:

- Groundwater Monitoring and Institutional Controls;
- Post Source Control/Removal Monitoring;
- Groundwater Capture/Control;
- Impermeable Barrier with Groundwater Capture/Control;
- Active Geochemical Sequestration; and
- Passive Geochemical Sequestration.

Consumers Energy is following an adaptive management strategy for selecting the final groundwater remedy for Pond A in conjunction with the specified CCR source material management strategies discussed in the ACM. Under this remedy selection strategy, measures that remove source material, reduce infiltration, and/or minimize the potential for future migration during the closure process may be implemented to address existing conditions followed by monitoring and evaluation of the performance after closure. Adjustments will be made to the corrective measure remedy, as needed, to achieve the remedial goals.

4.3 Remedy Selection

Remedy selection for Pond A, prescribed by the CCR Rule, is being undertaken in coordination with the EGLE Consent Agreement WMRPD No. 115-01-2018, which was executed on December 28, 2018. The January 2025 semiannual progress report describing the progress in selecting and designing the remedy required pursuant to §257.97(a) is included in Appendix E of this report. Pond A has been closed according to the *JH Campbell Generating Facility Pond A Closure Plan, West Olive, Michigan* (Golder, October 2016) and the updated closure plan detailing the final cover system that was submitted to the EGLE in February 2019. Pond A was closed with waste in place in accordance with the requirements for CCR landfills under RCRA (§257.102(d)). Cover construction was completed in summer 2019 and the *Construction Documentation and Certification Report* (Golder, October 2019) was approved by the EGLE on November 25, 2019.

Changes in groundwater chemistry continue to be evaluated following the completion of capping at Pond A. The arsenic exceedance at JHC-MW-15011, which initially triggered corrective action, continues to attenuate following the completion of the final cover for Pond A. Since the

installation of the final cover, groundwater monitoring data for several other constituents indicate an observable influence from immediately adjacent, upgradient, closed, pre-existing units. Remedial action for the upgradient units is being taken under Consent Agreement WMRPD No. 115-01-2018.

5.0 Conclusions and Recommendations

Assessment monitoring is ongoing at the Pond A CCR unit while corrective action continues to be assessed. Pond A has been closed in place. Overall, the statistical evaluations have confirmed that arsenic is the only Appendix IV constituent to have shown a statistically significant concentration above the GWPSs throughout the assessment monitoring program (2018-2024). In 2024, the statistical evaluation indicated that there were no statistically significant exceedances of the GWPS.

The ACM also documents that groundwater nature and extent have been defined, as required in §257.95(g)(1). Although arsenic concentrations exceed the GWPS in individual wells or samples on-site, concentrations are generally declining, and an evaluation of risk demonstrates that there are currently no adverse effects on human health or the environment from either surface water or groundwater due to CCR management at Pond A.

The ACM report provides a high-level assessment of groundwater remediation technologies that could potentially address site-specific constituents of concern (i.e. arsenic) under known groundwater conditions. Changes in groundwater chemistry following the completion of capping at Pond A indicate that the system is establishing a new equilibrium following closure and that the immediately upgradient closed CCR units are impacting groundwater quality in the Pond A well network.

The groundwater management remedy for Pond A will be selected as soon as feasible to, at a minimum, meet the federal standards of §257.97(b) of the CCR Rule. Consumers Energy will continue executing the self-implementing groundwater compliance schedule in conformance with §257.90 - §257.98. The next semiannual monitoring events are scheduled for the second and fourth calendar quarters of 2025.

6.0 References

- Consumers Energy. January 14, 2019. Notification of Appendix IV Constituent Exceeding Groundwater Protection Standard per §257.95(g).
- Golder Associates Inc. March 22, 2019. J.H. Campbell Generating Facility, Pond A Construction Quality Assurance (CQA) Plan. Prepared for Consumers Energy Company.
- Golder Associates Inc. March 8, 2019; Revised March 27, 2019. J.H. Campbell Generating Facility, Pond A Closure Plan. Prepared for Consumers Energy Company.
- Golder Associates Inc. October 1, 2019. J.H. Campbell Generating Facility, Pond A Construction Documentation and Certification Report. Submitted to Consumers Energy Company.
- TRC. January 2018. Annual Groundwater Monitoring Report, JH Campbell Power Plant, Pond A CCR Unit, West Olive, Michigan. Prepared for Consumers Energy Company.
- TRC. January 2019. 2018 Annual Groundwater Monitoring Report, JH Campbell Power Plant, Pond A CCR Unit, West Olive, Michigan. Prepared for Consumers Energy Company.
- TRC. March 2019; Revised July 2019. Pond A Hydrogeological Monitoring Plan, JH Campbell Power Plant, West Olive, Michigan. Prepared for Consumers Energy Company.
- TRC. September 2019. Assessment of Corrective Measures, JH Campbell Ponds 1-2 North and 1-2 South and Pond A Coal Combustion Residual Units, West Olive, Michigan. Prepared for Consumers Energy Company.
- TRC. January 2020. 2019 Annual Groundwater Monitoring and Corrective Action Report and Fourth Quarter 2019 Hydrogeological Monitoring Report, JH Campbell Power Plant, Pond A CCR Unit, West Olive, Michigan. Prepared for Consumers Energy.
- TRC. January 2021. Sample and Analysis Plan, Electric Generation Facilities RCRA CCR Assessment Monitoring Program, JH Campbell Power Plant Pond A, West Olive, Michigan. Prepared for Consumers Energy.
- TRC. January 2022. 2021 Annual Groundwater Monitoring and Corrective Action Report for the JH Campbell Power Plant Pond A CCR Unit, West Olive, Michigan. Prepared for Consumers Energy.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Conservation and Recovery. EPA 530/R-09-007.

Table 1

Summary of Groundwater Elevation Data JH Campbell – RCRA CCR Monitoring Program West Olive, Michigan

Well	Ground Surface	TOC	Geologic Unit	Screen Eleva		April	15, 2024	Octobe	er 14, 2024
Location	Elevation (ft)	Elevation (ft)	of Screen Interval	Eleva (f		Depth to Water (ft BTOC)	Groundwater Elevation (ft)	Depth to Water (ft BTOC)	Groundwater Elevation (ft)
Background	!	•						,	
JHC-MW-15023	617.01	619.98	Sand	603.0 to	593.	17.96	602.02	20.00	599.98
JHC-MW-15024	613.79	616.62	Sand	606.8 to	596.	3 13.68	602.94	15.46	601.16
JHC-MW-15025	614.14	617.17	Sand	607.1 to	597.	13.20	603.97	14.91	602.26
JHC-MW-15026	615.09	618.04	Sand	607.1 to	597.	15.19	602.85	16.76	601.28
JHC-MW-15027	614.77	617.30	Sand	604.8 to	594.	15.80	601.50	17.40	599.90
JHC-MW-15028	611.02	613.80	Sand	603.0 to	593.	16.57	597.23	17.26	596.54
JHC-MW-15029	608.08	610.95	Sand	600.1 to			598.13	14.46	596.49
JHC-MW-15030	604.05	607.17	Sand	600.1 to	590.	10.51	596.66	12.01	595.16
Pond 1N, 1S, 2N, 28	3								
JHC-MW-15001	607.02	609.53	Sand	603.5 to	598.	5	NM		NM
JHC-MW-15002	618.18	621.27	Sand	590.2 to	580.	24.50	596.77		NM
JHC-MW-15003	623.16	627.20	Sand	595.2 to	585.	32.69	594.51		NM
JHC-MW-15005	606.22	609.99	Sand	579.2 to			591.86		NM
JHC-MW-18004	602.92	605.72	Sand	596.9 to			594.35		NM
JHC-MW-18005	600.30	603.16	Sand	595.3 to			592.86		NM
JHC-MW-22001	601.52	604.28	Sand	596.5 to	_		593.60		NM
	001.52	004.20	Sanu	590.5	300.	10.00	593.00		INIVI
Pond 3N, 3S JHC-MW-15013	632.40	625.25	Sand	604.4 to	594.	35.39	599.89		NM
		635.25							
JHC-MW-15015	632.46	635.20	Sand	604.5 to			600.24		NM
JHC-MW-15016	631.81	632.52	Sand	603.8 to			600.10		NM
JHC-MW-18001	609.09	611.98	Sand	603.1 to	593.	12.26	599.72		NM
JHC-MW-18002	605.53	608.93	Sand	602.0 to	592.	9.09	599.84		NM
JHC-MW-18003	605.36	608.78	Sand	601.9 to	591.	9.00	599.78		NM
Landfill				·		_	·		
JHC-MW-15017	613.69	616.61	Sand	603.7 to	593.	16.80	599.81	18.11	598.50
JHC-MW-15018	614.26	617.02	Sand	604.3 to	594.	17.47	599.55	18.65	598.37
JHC-MW-15022	620.92	623.79	Sand	597.9 to	587.)	NM		NM
JHC-MW-15031	632.94	635.87	Sand	599.9 to	589.	43.70	592.17	44.41	591.46
JHC-MW-15032	611.32	614.29	Sand	598.3 to	_		597.26	18.74	595.55
JHC-MW-15033	618.08	620.99	Sand	602.1 to			NM		NM
JHC-MW-15034	612.90	615.97	Sand	601.9 to			597.27(3)	17.83	598.14
JHC-MW-15035	632.53	634.28	Sand	599.5 to			592.97	42.01	592.27
							592.97		
JHC-MW-15036	617.94	618.34	Sand	597.9 to				28.31	590.03
JHC-MW-15037	614.28	616.06	Sand	591.3 to			590.79	26.10	589.96
MW-B3	630.51	634.17	Sand	598.5 to			595.12	39.70	594.47
MW-B4	633.80	635.67	Sand	593.8 to	588.	41.75	593.92	42.41	593.26
Pond A								00 = :	T ==::::
JHC-MW-15006	624.74	627.58	Sand	599.7 to			592.48	36.54	591.04
JHC-MW-15007R ⁽²⁾		628.26	Sand	595.7 to			592.12	37.69	590.57
JHC-MW-15008R ⁽¹⁾		634.67	Sand	597.3 to	587.	3 43.08	591.59	44.65	590.02
JHC-MW-15009R ⁽²⁾	632.15	635.05	Sand	595.2 to	585.	43.29	591.76	44.54	590.51
JHC-MW-15011R ⁽²⁾	627.73	629.79	Sand	594.7 to	584.	37.60	592.19	38.68	591.11
Downgradient Well						<u>-</u>			•
MW-13	593.40	595.37	Clayey Silt	587.9 to	585.	9.98	585.39		Dry
MW-14S	587.36	590.98	Sand	582.9 to			579.96	11.18	579.80
PZ-23S	602.84	604.97	Sand	591.8 to			589.88	15.94	589.03
PZ-235 PZ-24S									580.40
	586.56	590.15	Sand	584.6 to			582.38	9.75	
PZ-40S	589.51	593.25	Sand	585.5 to			582.42	13.07	580.18
TW-19-05	603.44	606.36	Sand	592.8 to			590.67	17.63	588.73
TW-19-06A	599.61	602.54	Sand	592.3 to	587.	12.78	589.76	14.62	587.92

Notes:

Survey conducted by Nederveld, November 2015, October 2018, December 2018, August 2019, and July 2021.

Elevation in feet relative to North American Vertical Datum 1988 (NAVD 88).

TOC: Top of well casing.

ft BTOC: Feet below top of well casing.

NM: Not measured

(1) JHC-MW-15008R installed in June 2019.

 $(2) \ \mathsf{JHC\text{-}MW\text{-}15007R}, \ \mathsf{JHC\text{-}MW\text{-}15009R}, \ \mathsf{and} \ \mathsf{JHC\text{-}MW\text{-}15011R} \ \mathsf{installed} \ \mathsf{in} \ \mathsf{July} \ \mathsf{2021}.$

Table 2 Summary of Field Parameters JH Campbell Pond A - RCRA CCR Monitoring Program West Olive, Michigan

Sample Location	Sample Date	Dissolved Oxygen	Oxidation Reduction Potential	рН	Specific Conductivity	Temperature	Turbidity
		(mg/L)	(mV)	(SU)	(umhos/cm)	(°C)	(NTU)
JH Campbell Backgro							
JHC-MW-15023	4/15/2024	2.48	253.9	5.9	143	10.3	2.2
0110 WW 10020	10/14/2024	0.65	194.8	6.5	135	12.1	1.6
JHC-MW-15024	4/15/2024	2.67	174.5	7.5	286	9.4	2.1
JI 10-10100-13024	10/14/2024	0.67	178.4	7.9	328	12.1	1.8
JHC-MW-15025	4/15/2024	4.27	237.9	7.9	422	9.3	1.6
JHC-10100-15025	10/14/2024	3.29	153.0	8.0	420	11.3	2.6
JHC-MW-15026	4/15/2024	6.91	350.0	5.8	34	10.4	2.7
JHC-10100-15020	10/15/2024	4.05	316.2	5.9	46	11.9	2.3
JHC-MW-15027	4/15/2024	9.61	235.3	6.5	107	10.6	9.3
JHC-10100-15021	10/15/2024	8.34	280.0	7.4	154	12.5	2.9
JHC-MW-15028	4/15/2024	8.25	148.4	8.5	102	12.7	3.5
JUC-10100-12070	10/15/2024	8.20	225.1	8.7	109	13.4	3.5
JH Campbell Pond A							
JHC-MW-15006	4/16/2024	1.09	68.8	8.0	589	14.8	1.2
JUC-10100-12000	10/14/2024	0.66	95.3	8.5	554	14.2	1.3
JHC-MW-15007R	4/16/2024	1.81	61.0	8.0	547	14.7	2.1
JUC-10101-12001-K	10/14/2024	0.63	63.1	8.1	671	13.7	1.6
JHC-MW-15008R	4/16/2024	2.01	196.6	7.2	541	14.8	1.6
JUC-16166-12009K	10/14/2024	1.44	190.3	7.3	649	13.8	1.4
JHC-MW-15009R	4/16/2024	2.31	231.2	6.9	571	14.1	1.9
3UC-10108K	10/14/2024	0.70	170.6	7.0	463	13.4	1.5
ILIC MAN 45044D	4/16/2024	0.98	132.6	7.0	436	14.0	1.7
JHC-MW-15011R	10/14/2024	0.49	69.5	6.9	399	13.3	1.0

Notes:

mg/L -Milligrams per Liter.

mV - Millivolts.

SU - Standard Units.

umhos/cm - Micromhos per centimeter.

°C - Degrees Celsius.

NTU - Nephelometric Turbidity Unit

Summary of Groundwater Sampling Results (Analytical) JH Campbell Background - RCRA CCR Monitoring Program West Olive, Michigan

					Sample Location:	JHC-M\	N-15023	JHC-M\	N-15024	JHC-M\	N-15025
					Sample Date:	4/15/2024	10/14/2024	4/15/2024	10/14/2024	4/15/2024	10/14/2024
Constituent	Unit	EPA MCL	MI Residential*	MI Non- Residential*	MI GSI^						
Appendix III ⁽¹⁾											
Boron	ug/L	NC	500	500	7,200	46	27	26	< 20	26	21
Calcium	mg/L	NC	NC	NC	500EE	15.6	12.9	26.1	28.2	37.5	37.1
Chloride	mg/L	250**	250 ^E	250 ^E	500EE	6.80	4.57	13.5	26.8	50.3	43.3
Fluoride	ug/L	4,000	NC	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	250**	250 ^E	250 ^E	500EE	15.5	11.3	7.49	8.10	9.14	12.0
Total Dissolved Solids	mg/L	500**	500 ^E	500 ^E	500	105	84	155	174	242	215
pH, Field	SU	6.5 - 8.5**	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	5.9	6.5	7.5	7.9	7.9	8.0
Appendix IV ⁽¹⁾											
Antimony	ug/L	6	6.0	6.0	130	< 1	< 1	< 1	< 1	< 1	< 1
Arsenic	ug/L	10	10	10	10	< 1	< 1	< 1	< 1	< 1	< 1
Barium	ug/L	2,000	2,000	2,000	820	48	24	17	17	9	10
Beryllium	ug/L	4	4.0	4.0	18	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	5.0	5.0	3.5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	100	100	11	< 1	< 1	< 1	< 1	1	< 1
Cobalt	ug/L	NC	40	100	100	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	NC	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	NC	4.0	4.0	39	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	NC	170	350	440	< 10	< 10	< 10	< 10	< 10	< 10
Mercury	ug/L	2	2.0	2.0	0.20#	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	NC	73	210	3,200	< 5	< 5	< 5	< 5	< 5	< 5
Radium-226	pCi/L	NC	NC	NC	NC	< 0.171	< 0.137	< 0.154	< 0.178	< 0.183	0.128
Radium-228	pCi/L	NC	NC	NC	NC	< 0.591	< 0.541	< 0.656	< 0.601	0.597	0.586
Radium-226/228	pCi/L	5	NC	NC	NC	< 0.591	0.546	< 0.656	< 0.601	0.607	0.714
Selenium	ug/L	50	50	50	5.0	< 1	< 1	1	< 1	< 1	< 1
Thallium	ug/L	2	2.0	2.0	3.7	< 2	< 2	< 2	< 2	< 2	< 2

ug/L - micrograms per liter; mg/L - milligrams per liter.

pCi/L - picocuries per liter; SU - standard units; pH is a field parameter.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April, 2012.

NC - no criteria; -- - not analyzed.

- * Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 30, 2013, updated October 12, 2023.
- ** Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April, 2012.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using site-specific hardness of 180 mg CaCO3/L as measured at surface water sample SW-01 collected on April 9, 2018 from the Pigeon River. Chromium GSI criterion based on hexavalent chromium per footnote {H}.
- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway per Michigan Part 201 and MDEQ policy and procedure 09-014 dated June 20, 2012.
- E Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}.
- (1) 40 CFR Part 257 Appendix III Detection Monitoring Constituents and Appendix IV Assessment Monitoring Constituents.

BOLD value indicates an exceedance of one or more of the listed criteria.

RED value indicates an exceedance of the MCL.

All metals were analyzed as total unless otherwise specified.

Summary of Groundwater Sampling Results (Analytical) JH Campbell Background - RCRA CCR Monitoring Program West Olive, Michigan

					Sample Location:	JHC-M\	N-15026	JHC-M	N-15027	JHC-M	W-15028
					Sample Date:	4/15/2024	10/15/2024	4/15/2024	10/15/2024	4/15/2024	10/15/2024
Constituent	Unit	EPA MCL	MI Residential*	MI Non- Residential*	MI GSI^						
Appendix III ⁽¹⁾											
Boron	ug/L	NC	500	500	7,200	< 20	< 20	25	22	< 20	< 20
Calcium	mg/L	NC	NC	NC	500EE	3.14	4.28	13.1	18.7	13.6	15.0
Chloride	mg/L	250**	250 ^E	250 ^E	500EE	1.58	3.07	< 1.00	1.27	< 1.00	< 1.00
Fluoride	ug/L	4,000	NC	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	250**	250 ^E	250 ^E	500EE	5.85	7.24	5.02	4.79	4.12	5.23
Total Dissolved Solids	mg/L	500**	500 ^E	500 ^E	500	29	27	84	75	62	62
pH, Field	SU	6.5 - 8.5**	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	5.8	5.9	6.5	7.4	8.5	8.7
Appendix IV ⁽¹⁾											
Antimony	ug/L	6	6.0	6.0	130	< 1	< 1	< 1	< 1	< 1	< 1
Arsenic	ug/L	10	10	10	10	< 1	< 1	< 1	< 1	< 1	< 1
Barium	ug/L	2,000	2,000	2,000	820	8	9	20	8	5	6
Beryllium	ug/L	4	4.0	4.0	18	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	5.0	5.0	3.5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	100	100	11	< 1	< 1	1	< 1	< 1	< 1
Cobalt	ug/L	NC	40	100	100	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	NC	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	NC	4.0	4.0	39	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	NC	170	350	440	< 10	< 10	< 10	< 10	< 10	< 10
Mercury	ug/L	2	2.0	2.0	0.20#	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	NC	73	210	3,200	< 5	< 5	< 5	< 5	< 5	< 5
Radium-226	pCi/L	NC	NC	NC	NC	< 0.148	< 0.109	0.206	< 0.0985	< 0.239	< 0.116
Radium-228	pCi/L	NC	NC	NC	NC	< 0.562	< 0.617	1.03	0.828	< 0.628	< 0.566
Radium-226/228	pCi/L	5	NC	NC	NC	< 0.562	< 0.617	1.24	0.887	< 0.628	< 0.566
Selenium	ug/L	50	50	50	5.0	< 1	< 1	< 1	< 1	< 1	< 1
Thallium	ug/L	2	2.0	2.0	3.7	< 2	< 2	< 2	< 2	< 2	< 2

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

pCi/L - picocuries per liter; SU - standard units; pH is a field parameter.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April, 2012.

NC - no criteria; -- - not analyzed.

- * Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 30, 2013, updated October 12, 2023.
- ** Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April, 2012.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using site-specific hardness of 180 mg CaCO3/L as measured at surface water sample SW-01 collected on April 9, 2018 from the Pigeon River. Chromium GSI criterion based on hexavalent chromium per footnote {H}.
- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway per Michigan Part 201 and MDEQ policy and procedure 09-014 dated June 20, 2012.
- E Criterion is the aesthetic drinking water value per footnote {E}.
- $^{\mbox{\scriptsize EE}}$ Criterion is based on the total dissolved solids GSI value per footnote {EE}.
- (1) 40 CFR Part 257 Appendix III Detection Monitoring Constituents and Appendix IV Assessment Monitoring Constituents.

BOLD value indicates an exceedance of one or more of the listed criteria.

RED value indicates an exceedance of the MCL.

All metals were analyzed as total unless otherwise specified.

January 2025

Summary of Groundwater Sampling Results (Analytical) JH Campbell Pond A - RCRA CCR Monitoring Program West Olive, Michigan

					Sample Location:	JHC-M	W-15006	JHC-MV	/-15007R	JHC-MV	V-15008R	JHC-MV	V-15009R	JHC-MW	V-15011R
					Sample Date:	4/16/2024	10/14/2024	4/16/2024	10/14/2024	4/16/2024	10/14/2024	4/16/2024	10/14/2024	4/16/2024	10/14/2024
				MI Non-											
Constituent	Unit	EPA MCL	MI Residential*	Residential*	MI GSI [^]										
Appendix III ⁽¹⁾															
Boron	ug/L	NC	500	500	7,200	609	695	1,900	1,500	1,190	1,780	2,120	1,940	3,400	3,800
Calcium	mg/L	NC	NC	NC	500EE	67.8	52.8	56.6	63.6	56.0	62.8	85.6	59.9	60.2	47.6
Chloride	mg/L	250**	250 ^E	250 ^E	500EE	12.5	17.0	13.9	17.0	14.7	14.4	7.46	13.6	6.83	6.60
Fluoride	ug/L	4,000	NC	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	250**	250 ^E	250 ^E	500EE	80.6	78.5	88.4	91.4	80.2	98.5	55.7	28.4	63.9	53.7
Total Dissolved Solids	mg/L	500**	500E	500 ^E	500	393	308	414	388	379	380	392	264	335	225
pH, Field	SU	6.5 - 8.5**	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	8.0	8.5	8.0	8.1	7.2	7.3	6.9	7.0	7.0	6.9
Appendix IV ⁽¹⁾															
Antimony	ug/L	6	6.0	6.0	130	< 1	< 1	< 1	< 1	1	1	< 1	< 1	2	< 1
Arsenic	ug/L	10	10	10	10	9	11	6	6	< 1	< 1	< 1	< 1	8	5
Barium	ug/L	2,000	2,000	2,000	820	157	103	211	212	142	117	342	249	382	294
Beryllium	ug/L	4	4.0	4.0	18	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	5.0	5.0	3.5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.3	< 0.2
Chromium	ug/L	100	100	100	11	2	< 1	1	< 1	1	1	1	< 1	< 1	< 1
Cobalt	ug/L	NC	40	100	100	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	NC	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	NC	4.0	4.0	39	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	NC	170	350	440	15	13	15	15	18	19	16	12	23	17
Mercury	ug/L	2	2.0	2.0	0.20#	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	NC	73	210	3,200	15	30	52	35	23	27	7	9	18	11
Radium-226	pCi/L	NC	NC	NC	NC	0.161	0.147	0.393	0.345	< 0.205	< 0.373	0.255	< 0.217	0.277	0.233
Radium-228	pCi/L	NC	NC	NC	NC	< 0.517	< 0.438	< 0.747	< 0.779	< 0.522	< 0.619	0.849	< 0.690	< 0.594	< 0.687
Radium-226/228	pCi/L	5	NC	NC	NC	< 0.517	0.476	0.925	1.08	0.548	< 0.619	1.1	0.823	0.674	< 0.687
Selenium	ug/L	50	50	50	5.0	25	5	8	5	7	12	242	80	77	60
Thallium	ug/L	2	2.0	2.0	3.7	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

pCi/L - picocuries per liter; SU - standard units; pH is a field parameter.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April, 2012.

NC - no criteria; -- - not analyzed.

- * Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 30, 2013, updated October 12, 2023.
- ** Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April, 2012.
- ^- Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using site-specific hardness of 180 mg CaCO3/L as measured at surface water sample SW-01 collected on April 9, 2018 from the Pigeon River. Chromium GSI criterion based on beyavalent chromium per footnote (H).
- from the Pigeon River. Chromium GSI criterion based on hexavalent chromium per footnote (H).

 # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway per Michigan Part 201 and MDEQ policy and procedure 09-014 dated June 20, 2012.
- E Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}.

(1) 40 CFR Part 257 Appendix III Detection Monitoring Constituents and Appendix IV Assessment Monitoring Constituents.

BOLD value indicates an exceedance of one or more of the listed criteria.

RED value indicates an exceedance of the MCL.

All metals were analyzed as total unless otherwise specified.

Table 5

Summary of Groundwater Protection Standard Exceedances – April 2024 JH Campbell Pond A – RCRA CCR Monitoring Program West Olive, Michigan

Constituent	Units	GWPS	JHC-MW	/-15008R	JHC-MW	/-15009/R	JHC-MW-15011/R		
Constituent	Ullits		LCL	UCL	LCL	UCL	LCL	UCL	
Arsenic	ug/L	10					3.2	16	
Selenium	ug/L	50	5.3	30	24	170	19	190	

Notes:

ug/L - micrograms per Liter

-- - Not Applicable; well/parameter pair did not directly exceed the GWPS and was not included in further analysis.

GWPS - Groundwater Protection Standard as established in TRC's Technical Memorandum dated October 15, 2018.

UCL - Upper Confidence Limit (α = 0.01) of the downgradient data set.

LCL - Lower Confidence Limit ($\alpha = 0.01$) of the downgradient data set.

Indicates a statistically significant exceedance of the GWPS. An exceedance occurs

when the LCL is greater than the GWPS.

Table 6

Summary of Groundwater Protection Standard Exceedances – October 2024 JH Campbell Pond A – RCRA CCR Monitoring Program West Olive, Michigan

Constituent	Units	GWPS	JHC-MV	V-15006	JHC-MW	/-15009/R	JHC-MW-15011/R		
Constituent	Ullits	GWF3	LCL	UCL	LCL	UCL	LCL	UCL	
Arsenic	ug/L	10	4.8	10			3.9	11	
Selenium	ug/L	50			25	170	26	110	

Notes:

ug/L - micrograms per Liter

--- Not Applicable; well/parameter pair did not directly exceed the GWPS and was not included in further analysis.

GWPS - Groundwater Protection Standard as established in TRC's Technical Memorandum dated October 15, 2018.

UCL - Upper Confidence Limit ($\alpha = 0.01$) of the downgradient data set.

LCL - Lower Confidence Limit (α = 0.01) of the downgradient data set.

Indicates a statistically significant exceedance of the GWPS. An exceedance occurs

when the LCL is greater than the GWPS.

Summary of Groundwater Sampling Results (Analytical) JH Campbell Pond A GSI - RCRA CCR Monitoring Program West Olive, Michigan

					Sample Location:	MW	<i>'</i> -14S	PZ-	-23S	PZ	:-24	PZ.	-24S
					Sample Date:	4/16/2024	10/15/2024	4/17/2024	10/15/2024	4/16/2024	10/15/2024	4/16/2024	10/15/2024
				MI Non-									
Constituent	Unit	EPA MCL	MI Residential*	Residential*	MI GSI^								
Appendix III ⁽¹⁾													
Boron	ug/L	NC	500	500	7,200	24	45	< 20	24	185	199	< 20	29
Calcium	mg/L	NC	NC	NC	500EE	3.50	4.25	3.99	5.06	37.7	32.2	3.62	9.25
Chloride	mg/L	250**	250 ^E	250 ^E	500EE	1.21	< 1.00	< 1.00	< 1.00	2.37	2.11	1.33	1.22
Fluoride	ug/L	4,000	NC	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	250**	250 ^E	250 ^E	500EE	11.3	9.35	2.41	2.28	105	86.8	13.8	24.6
Total Dissolved Solids	mg/L	500**	500 ^E	500E	500	46	40	127	31	395	192	68	84
pH, Field	SU	6.5 - 8.5**	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	6.0	6.0	7.0	7.1	7.4	7.7	5.1	6.0
Appendix IV ⁽¹⁾													
Antimony	ug/L	6	6.0	6.0	130	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Arsenic	ug/L	10	10	10	10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	3
Barium	ug/L	2,000	2,000	2,000	820	13	35	< 5	< 5	26	20	62	18
Beryllium	ug/L	4	4.0	4.0	18	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	5.0	5.0	3.5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	100	100	11	< 1	< 1	< 1	< 1	1	< 1	< 1	< 1
Cobalt	ug/L	NC	40	100	100	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	NC	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	NC	4.0	4.0	39	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	NC	170	350	440	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Mercury	ug/L	2	2.0	2.0	0.20#	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	NC	73	210	3,200	6	9	< 5	< 5	8	10	< 5	< 5
Radium-226	pCi/L	NC	NC	NC	NC	< 0.0864	< 0.194	< 0.0922	< 0.150	< 0.109	< 0.177	< 0.125	< 0.176
Radium-228	pCi/L	NC	NC	NC	NC	< 0.547	1.19	0.671	0.905	< 0.63	< 0.689	0.801	< 0.874
Radium-226/228	pCi/L	5	NC	NC	NC	< 0.547	1.15	0.737	0.955	< 0.63	< 0.689	0.85	< 0.874
Selenium	ug/L	50	50	50	5.0	1	1	< 1	< 1	< 1	< 1	< 1	< 1
Thallium	ug/L	2	2.0	2.0	3.7	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

pCi/L - picocuries per liter; SU - standard units; pH is a field parameter.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April, 2012.

NC - no criteria; -- - not analyze

- * Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 30, 2013, updated October 12, 2023.
- ** Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April, 2012.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using site-specific hardness of 180 mg CaCO3/L as measured at surface water sample SW-01 collected on April 9, 2018 from the Pigeon River. Chromium GSI criterion based on hexavalent chromium per footnote {H}.
- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway per Michigan Part 201 and MDEQ policy and procedure 09-014 dated June 20, 2012.
- ^E Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}.

(1) 40 CFR Part 257 Appendix III Detection Monitoring Constituents and Appendix IV Assessment Monitoring Constituents.

BOLD value indicates an exceedance of one or more of the listed criteria.

RED value indicates an exceedance of the MCL.

All metals were analyzed as total unless otherwise specified.

January 2025

Summary of Groundwater Sampling Results (Analytical) JH Campbell Pond A GSI - RCRA CCR Monitoring Program West Olive, Michigan

					Sample Location:	PZ-40		PZ-40S		TW-19-05		TW-19-06A	
					Sample Date:	4/17/2024	10/15/2024	4/17/2024	10/15/2024	4/16/2024	10/15/2024	4/16/2024	10/15/2024
Constituent	Unit	EPA MCL	MI Residential*	MI Non- Residential*	MI GSI^								
Appendix III ⁽¹⁾	•												
Boron	ug/L	NC	500	500	7,200	210	162	27	70	81	156	1,120	78
Calcium	mg/L	NC	NC	NC	500EE	13.9	9.36	1.75	2.16	24.9	52.5	23.7	19.4
Chloride	mg/L	250**	250 ^E	250 ^E	500EE	7.96	3.08	1.58	1.95	< 1.00	1.29	15.5	< 1.00
Fluoride	ug/L	4,000	NC	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	250**	250 ^E	250 ^E	500EE	15.7	9.47	6.52	6.73	9.72	11.2	63.8	5.88
Total Dissolved Solids	mg/L	500**	500E	500E	500	97	60	121	41	184	276	159	82
pH, Field	SÜ	6.5 - 8.5**	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	6.7	6.8	5.1	5.2	7.2	7.6	8.9	7.3
Appendix IV ⁽¹⁾	•												
Antimony	ug/L	6	6.0	6.0	130	< 1	< 1	< 1	< 1	2	1	< 1	< 1
Arsenic	ug/L	10	10	10	10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Barium	ug/L	2,000	2,000	2,000	820	17	11	26	31	23	74	5	8
Beryllium	ug/L	4	4.0	4.0	18	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	5.0	5.0	3.5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	100	100	11	< 1	< 1	1	< 1	1	< 1	< 1	< 1
Cobalt	ug/L	NC	40	100	100	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	NC	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	NC	4.0	4.0	39	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	NC	170	350	440	< 10	< 10	< 10	< 10	29	24	< 10	< 10
Mercury	ug/L	2	2.0	2.0	0.20#	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	NC	73	210	3,200	33	41	< 5	< 5	< 5	7	29	9
Radium-226	pCi/L	NC	NC	NC	NC	< 0.108	< 0.178	< 0.125	< 0.127	0.137	0.128	< 0.0952	< 0.170
Radium-228	pCi/L	NC	NC	NC	NC	< 0.496	< 0.788	< 0.554	0.773	< 0.666	0.487	< 0.622	0.653
Radium-226/228	pCi/L	5	NC	NC	NC	< 0.496	< 0.788	< 0.554	0.756	< 0.666	0.615	0.633	0.621
Selenium	ug/L	50	50	50	5.0	< 1	3	< 1	1	18	23	1	111
Thallium	ug/L	2	2.0	2.0	3.7	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2

Notes

ug/L - micrograms per liter; mg/L - milligrams per liter.

pCi/L - picocuries per liter; SU - standard units; pH is a field parameter.

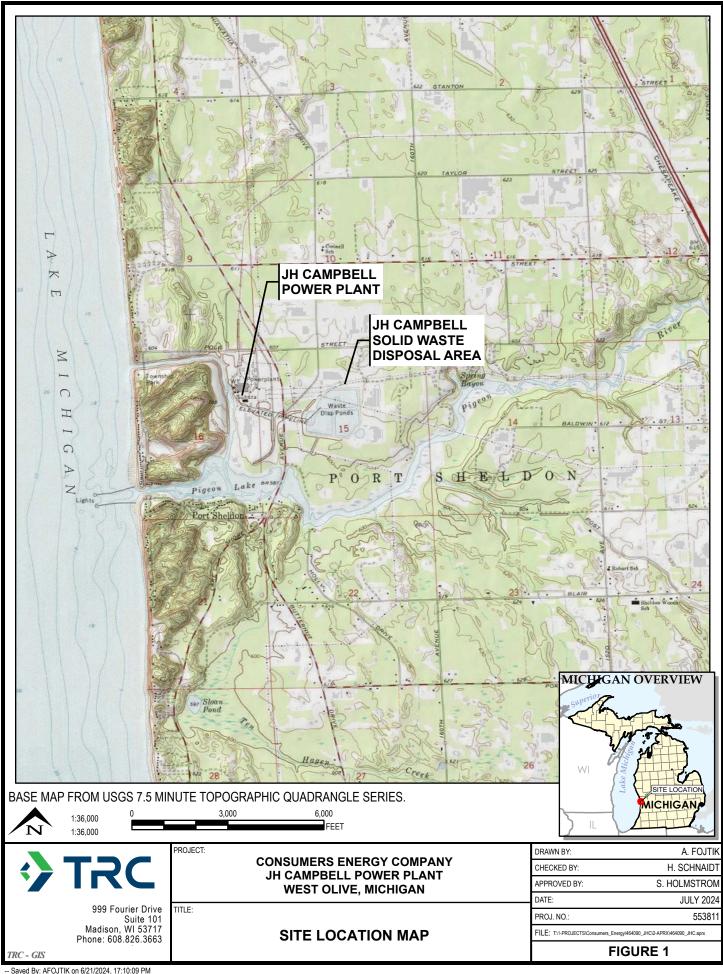
MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April, 2012.

NC - no criteria; -- - not analyze

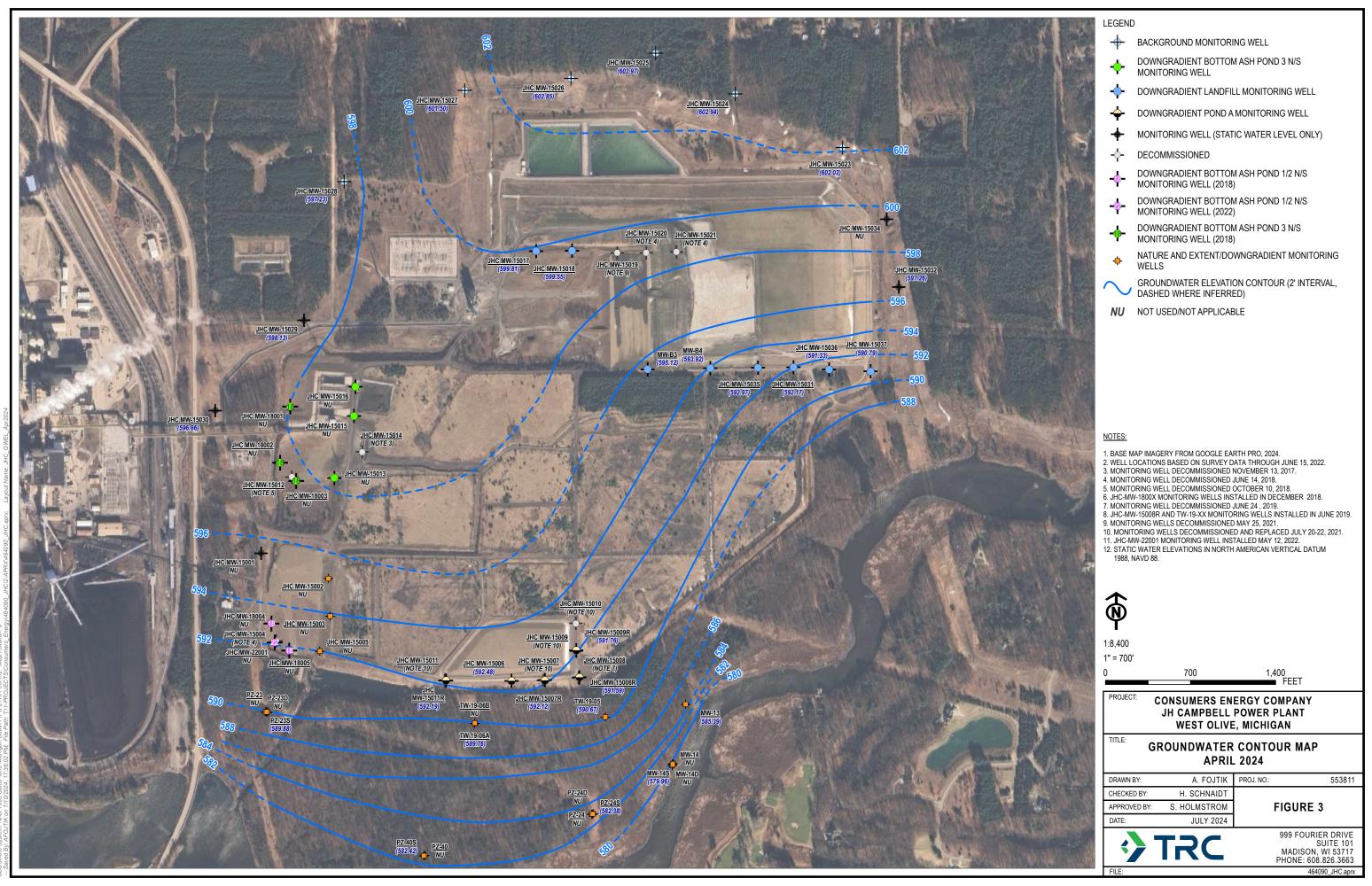
- * Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 30, 2013, updated October 12, 2023.
- ** Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April, 2012.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using site-specific hardness of 180 mg CaCO3/L as measured at surface water sample SW-01 collected on April 9, 2018 from the Pigeon River. Chromium GSI criterion based on hexavalent chromium per footnote {H}.
- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway per Michigan Part 201 and MDEQ policy and procedure 09-014 dated June 20, 2012.
- ^E Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}.

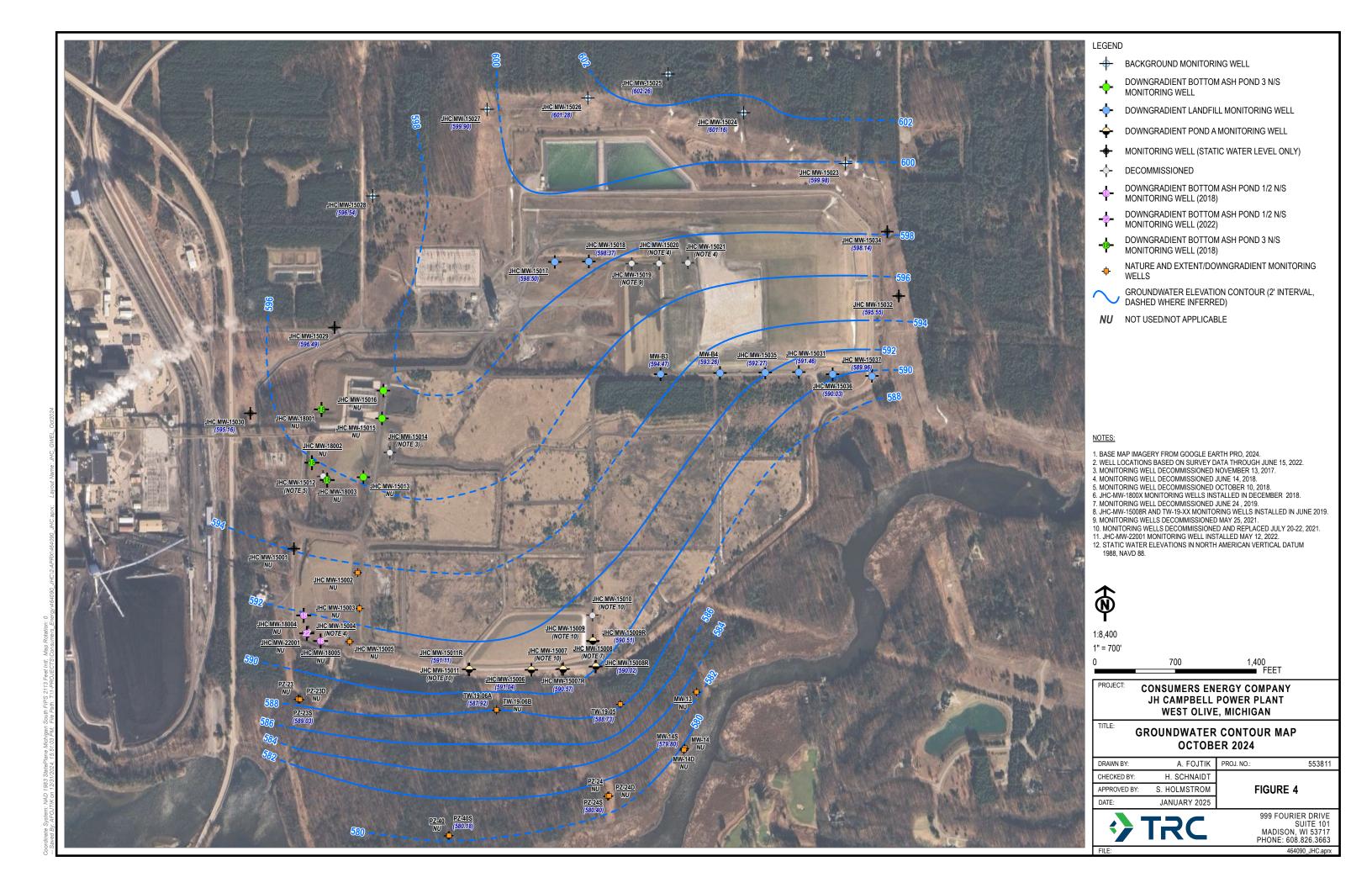
(1) 40 CFR Part 257 Appendix III Detection Monitoring Constituents and Appendix IV Assessment Monitoring Constituents.

BOLD value indicates an exceedance of one or more of the listed criteria.


RED value indicates an exceedance of the MCL.

All metals were analyzed as total unless otherwise specified.


January 2025


Figures

.. NAD 1083 StateDlane Michines Couth EIDS 2112 East Intl. Man Datation: O

Appendix A Laboratory and Field Data

135 W. Trail St. Jackson, MI 49201 phone 517-788-1251 fax 517-788-2533

To: JJFirlit, JH Campbell Complex

From: EBlaj, T-258

Date: May 03, 2024

Subject: JH CAMPBELL SOLID WASTE DISPOSAL AREA - GROUNDWATER MONITORING

2nd Quarter, 2024 – Background Wells

CC: HDRegister, P22-521 Sarah Holmstrom, Project Manager

ADSantini, P20-215B-REM TRC Companies, Inc. 1540 Eisenhower Place

Ann Arbor, MI 48108

Chemistry Project: 24-0278

CE Laboratory Services conducted groundwater monitoring at the JH Campbell Solid Waste Disposal Area during the week of 04/15/2024, for the 2nd Quarter requirement, as specified in the Hydrogeological Monitoring Plan for the site. The samples were received for analysis by the Chemistry department on 04/17/2024.

Samples for Radium analysis have been subcontracted to Eurofins/TestAmerica, Inc. and their results are being reported separately. Please note that the subcontracted work is not reported under the CE laboratory scope of accreditation.

The report that follows presents the results of the requested analytical testing; the results apply only to the samples, as received. All samples have been analyzed in accordance with the 2016 TNI Standard and the applicable A2LA accreditation scope for Laboratory Services. Any exceptions to applicable test method criteria and standard compliance are noted in the Case Narrative or flagged with applicable qualifiers in the analytical results section.

Reviewed and approved by:

Emil Blaj Sr. Technical Analyst Project Lead

Testing performed in accordance with the A2LA scope of accredidation specified in the listed certificate.

The information contained in this report is the sole property of Consumers Energy. It cannot be reproduced except in full, and with consent from Consumers Energy, or the customer for which this report was issued.

CASE NARRATIVE

I. Sample Receipt

All samples were received within hold time and in good conditions; no anomalies were noted on the Sample Log-In Shipment Inspection Form during sample check-in. Identification of all samples included in the work order/project is provided in the sample summary section. Sample preservation upon receipt was verified by the sample custodian and confirmed to meet method requirements.

II. Methodology

Unless otherwise indicated, sample preparation and analysis was performed in accordance with the corresponding test methods from "Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100); SW-846, "Test Methods for Evaluating Solid Waste – Physical/Chemical Methods", USEPA (latest revisions), and Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 22nd Edition, 2012.

III. Results/Quality Control

Analytical results for this report are presented by laboratory sample ID, container & aliquot number. Results for the field blanks, field duplicates, and percent recoveries of the field matrix spike & matrix spike duplicate samples are included in the results section. Unless specifically noted in the case narrative, all method quality control requirements have been met. If any results are qualified, the corresponding data flags/qualifiers are listed on the last page of the results section. Any additional information on method performance, when applicable, is presented in this section of the case narrative. When data flags are not needed, the qualifiers text box on the last page is left blank, and a statement confirms that no exceptions occurred.

DEFINITIONS / QUALIFIERS

The following qualifiers and/or acronyms are used in the report where applicable:

Acronym	Description
RL	Reporting Limit
ND	Result not detected or below Reporting Limit
NT	Not a TNI Analyte
LCS	Laboratory Control Sample
LRB	Laboratory Reagent Blank (also referred to as Method Blank)
DUP	Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
RPD	Relative Percent Difference
MDL	Method Detection Limit
PQL	Practical Quantitation Limit
TDL	Target Detection Limit
SM	Standard Methods Compendium
Qualifier *	Description Generic data flag, applicable description added in the corresponding notes section The graphete was detected in the LRB at a level which is given from the plate to a secure and a result.
В	The analyte was detected in the LRB at a level which is significant relative to sample result

D	Reporting limit elevated due to dilution
Е	Estimated due to result exceeding the linear range of the analyzer
Н	The maximum recommended hold time was exceeded
[Dilution required due to matrix interference; reporting limit elevated
J	Estimated due to result found above MDL but below PQL (or RL)
K	Reporting limit raised due to matrix interference
M	The precision for duplicate analysis was not met; RPD outside acceptance criteria
N	Non-homogeneous sample made analysis questionable
PI	Possible interference may have affected the accuracy of the laboratory result
Q	Matrix Spike or Matrix Spike Duplicate recovery outside acceptance criteria
R	Result confirmed by new sample preparation and reanalysis
X	Other notation required; comment listed in sample notes and/or case narrative

Work Order Sample Summary

Customer Name: JH Campbell Complex

Work Order ID: Q2-2024 JHC Background Wells

Date Received: 4/17/2024 Chemistry Project: 24-0278

Sample #	Field Sample ID	<u>Matrix</u>	Sample Date	<u>Site</u>
24-0278-01	JHC-MW-15023	Groundwater	04/15/2024 20:16	JHC GW Monitoring - Background Wells
24-0278-02	JHC-MW-15024	Groundwater	04/15/2024 18:39	JHC GW Monitoring - Background Wells
24-0278-03	JHC-MW-15025	Groundwater	04/15/2024 18:20	JHC GW Monitoring - Background Wells
24-0278-04	JHC-MW-15026	Groundwater	04/15/2024 16:51	JHC GW Monitoring - Background Wells
24-0278-05	JHC-MW-15027	Groundwater	04/15/2024 17:32	JHC GW Monitoring - Background Wells
24-0278-06	JHC-MW-15028	Groundwater	04/15/2024 15:14	JHC GW Monitoring - Background Wells
24-0278-07	DUP-01	Groundwater	04/15/2024 00:00	JHC GW Monitoring - Background Wells
24-0278-08	FB-01	Water	04/15/2024 20:40	JHC GW Monitoring - Background Wells
24-0278-09	EB-01	Water	04/15/2024 20:25	JHC GW Monitoring - Background Wells
24-0278-10	JHC-MW-15025 Field MS	Groundwater	04/15/2024 18:20	JHC GW Monitoring - Background Wells
24-0278-11	JHC-MW-15025 Field MSD	Groundwater	04/15/2024 18:20	JHC GW Monitoring - Background Wells

05/03/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0278

 Field Sample ID:
 JHC-MW-15023
 Collect Date:
 04/15/2024

 Lab Sample ID:
 24-0278-01
 Collect Time:
 08:16 PM

	ndix III-IV To	- Inotal		Aliquot #: 24-0	278-01-C01-A01	Analyst: EE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Arsenic	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Barium	48		ug/L	5.0	04/23/2024	AB24-0423-01
Beryllium	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Boron	46		ug/L	20.0	04/23/2024	AB24-0423-01
Cadmium	ND		ug/L	0.2	04/23/2024	AB24-0423-01
Calcium	15600		ug/L	1000.0	04/23/2024	AB24-0423-01
Chromium	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Cobalt	ND		ug/L	6.0	04/23/2024	AB24-0423-01
Copper	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Iron	58		ug/L	20.0	04/23/2024	AB24-0423-01
Lead	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Lithium	ND		ug/L	10.0	04/23/2024	AB24-0423-01
Magnesium	5310		ug/L	1000.0	04/23/2024	AB24-0423-01
Molybdenum	ND		ug/L	5.0	04/23/2024	AB24-0423-01
Nickel	ND		ug/L	2.0	04/23/2024	AB24-0423-01
Potassium	1060		ug/L	100.0	04/23/2024	AB24-0423-01
Selenium	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Silver	ND		ug/L	0.2	04/23/2024	AB24-0423-01
Sodium	6050		ug/L	1000.0	04/23/2024	AB24-0423-01
Thallium	ND		ug/L	2.0	04/23/2024	AB24-0423-01
Vanadium	ND		ug/L	2.0	04/23/2024	AB24-0423-01
Zinc	ND		ug/L	10.0	04/23/2024	AB24-0423-01
Mercury by EPA 7470A, Total, Aqueou	s			Aliquot #: 24-0	278-01-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	04/24/2024	AB24-0424-02
Anions by EPA 300.0 CCR Rule Analyt	e List, CI, F,	SO4, Aqı	ieous	Aliquot #: 24-0	278-01-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	6800		ug/L	1000.0	04/19/2024	AB24-0419-01
Fluoride	ND		ug/L	1000.0	04/19/2024	AB24-0419-01
Sulfate	15500		ug/L	1000.0	04/19/2024	AB24-0419-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	278-01-C03-A01	Analyst: CLE
Total Dissolved Collas by Cili 20400						
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking

Report Date: 05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0278

 Field Sample ID:
 JHC-MW-15023
 Collect Date:
 04/15/2024

 Lab Sample ID:
 24-0278-01
 Collect Time:
 08:16 PM

Alkalinity by SM 2320B			Aliquot #: 24-0	Analyst: DLS	
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	47200	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Bicarbonate	47200	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Carbonate	ND	ug/L	10.0	04/22/2024	AB24-0422-05

05/03/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0278

 Field Sample ID:
 JHC-MW-15024
 Collect Date:
 04/15/2024

 Lab Sample ID:
 24-0278-02
 Collect Time:
 06:39 PM

Parameter(s) Result Antimony ND Arsenic ND Barium 17 Beryllium ND Boron 26 Cadmium ND Calcium 26100 Chromium ND Cobalt ND Copper 1 Iron 93 Lead ND Lithium ND Magnesium 8010 Molybdenum ND Nickel ND Potassium 863 Selenium 1 Silver ND Sodium 20100 Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result	Flag	Units ug/L ug/L	RL 1.0 1.0 5.0 1.0 20.0 0.2 1000.0 1.0 6.0 1.0 20.0 1.0 10.0 1000.0 5.0 2.0 100.0 1.0 0.2 1000.0	Analysis Date 04/23/2024	Tracking AB24-0423-01
Arsenic ND Barium 17 Beryllium ND Boron 26 Cadmium ND Calcium 26100 Chromium ND Cobalt ND Copper 1 Iron 93 Lead ND Lithium ND Magnesium 8010 Molybdenum ND Nickel ND Potassium 863 Selenium 1 Silver ND Sodium 20100 Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Result		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 5.0 1.0 20.0 0.2 1000.0 1.0 6.0 1.0 20.0 1.0 1000.0 5.0 2.0 100.0 1.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01
Barium 17 Beryllium ND Boron 26 Cadmium ND Calcium 26100 Chromium ND Cobalt ND Copper 1 Iron 93 Lead ND Lithium ND Magnesium 8010 Molybdenum ND Nickel ND Potassium 863 Selenium 1 Silver ND Sodium 20100 Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 1.0 20.0 0.2 1000.0 1.0 6.0 1.0 20.0 1.0 1000.0 5.0 2.0 100.0 1.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01
Beryllium ND Boron 26 Cadmium ND Calcium 26100 Chromium ND Cobalt ND Copper 1 Iron 93 Lead ND Lithium ND Magnesium 8010 Molybdenum ND Nickel ND Potassium 863 Selenium 1 Silver ND Sodium 20100 Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Result		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 20.0 0.2 1000.0 1.0 6.0 1.0 20.0 1.0 1000.0 5.0 2.0 100.0 1.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01
Boron		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	20.0 0.2 1000.0 1.0 6.0 1.0 20.0 1.0 1000.0 5.0 2.0 100.0 1.0 0.2	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01
Cadmium ND Calcium 26100 Chromium ND Cobalt ND Copper 1 Iron 93 Lead ND Lithium ND Magnesium 8010 Molybdenum ND Nickel ND Potassium 863 Selenium 1 Silver ND Sodium 20100 Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 1000.0 1.0 6.0 1.0 20.0 1.0 1000.0 5.0 2.0 100.0 1.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01
Calcium 26100 Chromium ND Cobalt ND Copper 1 Iron 93 Lead ND Lithium ND Magnesium 8010 Molybdenum ND Nickel ND Potassium 863 Selenium 1 Silver ND Sodium 20100 Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Result		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1000.0 1.0 6.0 1.0 20.0 1.0 10.0 1000.0 5.0 2.0 100.0 1.0 0.2	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01
Chromium ND Cobalt ND Copper 1 Iron 93 Lead ND Lithium ND Magnesium 8010 Molybdenum ND Nickel ND Potassium 863 Selenium 1 Silver ND Sodium 20100 Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 6.0 1.0 20.0 1.0 10.0 1000.0 5.0 2.0 100.0 1.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01
Cobalt ND Copper 1 Iron 93 Lead ND Lithium ND Magnesium 8010 Molybdenum ND Nickel ND Potassium 863 Selenium 1 Silver ND Sodium 20100 Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	6.0 1.0 20.0 1.0 10.0 1000.0 5.0 2.0 100.0 1.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01
Copper 1 Iron 93 Lead ND Lithium ND Magnesium 8010 Molybdenum ND Nickel ND Potassium 863 Selenium 1 Silver ND Sodium 20100 Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Result		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 20.0 1.0 10.0 1000.0 5.0 2.0 100.0 1.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01
Iron 93 Lead ND Lithium ND Magnesium 8010 Molybdenum ND Nickel ND Potassium 863 Selenium 1 Silver ND Sodium 20100 Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	20.0 1.0 10.0 1000.0 5.0 2.0 100.0 1.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01
Lead ND Lithium ND Magnesium 8010 Molybdenum ND Nickel ND Potassium 863 Selenium 1 Silver ND Sodium 20100 Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 10.0 1000.0 5.0 2.0 100.0 1.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01
Lithium ND Magnesium 8010 Molybdenum ND Nickel ND Potassium 863 Selenium 1 Silver ND Sodium 20100 Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result		ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10.0 1000.0 5.0 2.0 100.0 1.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01
Magnesium 8010 Molybdenum ND Nickel ND Potassium 863 Selenium 1 Silver ND Sodium 20100 Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result		ug/L ug/L ug/L ug/L ug/L ug/L	1000.0 5.0 2.0 100.0 1.0 0.2	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01
Molybdenum ND Nickel ND Potassium 863 Selenium 1 Silver ND Sodium 20100 Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result		ug/L ug/L ug/L ug/L ug/L	5.0 2.0 100.0 1.0 0.2	04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01
Nickel ND Potassium 863 Selenium 1 Silver ND Sodium 20100 Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result		ug/L ug/L ug/L ug/L	2.0 100.0 1.0 0.2	04/23/2024 04/23/2024 04/23/2024	AB24-0423-01 AB24-0423-01 AB24-0423-01
Potassium 863 Selenium 1 Silver ND Sodium 20100 Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result		ug/L ug/L ug/L	100.0 1.0 0.2	04/23/2024 04/23/2024	AB24-0423-01 AB24-0423-01
Selenium 1 Silver ND Sodium 20100 Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result		ug/L ug/L	1.0 0.2	04/23/2024	AB24-0423-01
Silver ND Sodium 20100 Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result		ug/L	0.2		
Sodium 20100 Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result		-		04/23/2024	AB24-0423-01
Thallium ND Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result		ug/L	1000.0		
Vanadium ND Zinc ND Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result			1000.0	04/23/2024	AB24-0423-01
Zinc ND Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result		ug/L	2.0	04/23/2024	AB24-0423-01
Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result		ug/L	2.0	04/23/2024	AB24-0423-01
Parameter(s) Result		ug/L	10.0	04/23/2024	AB24-0423-01
• •			Aliquot #: 24-0	278-02-C01-A02	Analyst: CLE
Mercury ND	Flag	Units	RL	Analysis Date	Tracking
		ug/L	0.2	04/24/2024	AB24-0424-02
Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SC	04, Aq u	eous	Aliquot #: 24-0	278-02-C02-A01	Analyst: KDF
Parameter(s) Result	Flag	Units	RL	Analysis Date	Tracking
Chloride 13500		ug/L	1000.0	04/19/2024	AB24-0419-01
Fluoride ND		ug/L	1000.0	04/19/2024	AB24-0419-01
Sulfate 7490		ug/L	1000.0	04/19/2024	AB24-0419-01
Total Dissolved Solids by SM 2540C			Aliquot #: 24-0	278-02-C03-A01	Analyst: CLE
Parameter(s) Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids 155		mg/L	10.0	04/17/2024	AB24-0417-09

Report Date: 05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0278

 Field Sample ID:
 JHC-MW-15024
 Collect Date:
 04/15/2024

 Lab Sample ID:
 24-0278-02
 Collect Time:
 06:39 PM

Alkalinity by SM 2320B			Aliquot #: 24-0	Analyst: DLS	
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	119000	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Bicarbonate	119000	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Carbonate	ND	ug/L	10.0	04/22/2024	AB24-0422-05

05/03/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0278

 Field Sample ID:
 JHC-MW-15025
 Collect Date:
 04/15/2024

 Lab Sample ID:
 24-0278-03
 Collect Time:
 06:20 PM

	ndix III-IV To		x-p	Aliquot #: 24-0	278-03-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Arsenic	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Barium	9		ug/L	5.0	04/23/2024	AB24-0423-01
Beryllium	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Boron	26		ug/L	20.0	04/23/2024	AB24-0423-01
Cadmium	ND		ug/L	0.2	04/23/2024	AB24-0423-01
Calcium	37500		ug/L	1000.0	04/23/2024	AB24-0423-01
Chromium	1		ug/L	1.0	04/23/2024	AB24-0423-01
Cobalt	ND		ug/L	6.0	04/23/2024	AB24-0423-01
Copper	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Iron	34		ug/L	20.0	04/23/2024	AB24-0423-01
Lead	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Lithium	ND		ug/L	10.0	04/23/2024	AB24-0423-01
Magnesium	11400		ug/L	1000.0	04/23/2024	AB24-0423-01
Molybdenum	ND		ug/L	5.0	04/23/2024	AB24-0423-01
Nickel	ND		ug/L	2.0	04/23/2024	AB24-0423-01
Potassium	1190		ug/L	100.0	04/23/2024	AB24-0423-01
Selenium	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Silver	ND		ug/L	0.2	04/23/2024	AB24-0423-01
Sodium	25900		ug/L	1000.0	04/23/2024	AB24-0423-01
Thallium	ND		ug/L	2.0	04/23/2024	AB24-0423-01
Vanadium	ND		ug/L	2.0	04/23/2024	AB24-0423-01
Zinc	ND		ug/L	10.0	04/23/2024	AB24-0423-01
Mercury by EPA 7470A, Total, Aqueous		Aliquot #: 24-0	278-03-C01-A02	Analyst: CLE		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	04/24/2024	AB24-0424-02
Anions by EPA 300.0 CCR Rule Analyte	e List, CI, F,	SO4, Aqı	ieous	Aliquot #: 24-0	278-03-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	50300		ug/L	1000.0	04/19/2024	AB24-0419-01
Fluoride	ND		ug/L	1000.0	04/19/2024	AB24-0419-01
Sulfate	9140		ug/L	1000.0	04/19/2024	AB24-0419-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	278-03-C03-A01	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking

Report Date: 05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0278

 Field Sample ID:
 JHC-MW-15025
 Collect Date:
 04/15/2024

 Lab Sample ID:
 24-0278-03
 Collect Time:
 06:20 PM

Alkalinity by SM 2320B			Aliquot #: 24-0	Analyst: DLS	
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	120000	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Bicarbonate	120000	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Carbonate	ND	ug/L	10.0	04/22/2024	AB24-0422-05

05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0278

 Field Sample ID:
 JHC-MW-15026
 Collect Date:
 04/15/2024

 Lab Sample ID:
 24-0278-04
 Collect Time:
 04:51 PM

Metals by EPA 6020B: CCR Rule Appe	endix III-IV To	tal Metals	s Ехр	Aliquot #: 24-0	278-04-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Arsenic	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Barium	8		ug/L	5.0	04/23/2024	AB24-0423-01
Beryllium	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Boron	ND		ug/L	20.0	04/23/2024	AB24-0423-01
Cadmium	ND		ug/L	0.2	04/23/2024	AB24-0423-01
Calcium	3140		ug/L	1000.0	04/23/2024	AB24-0423-01
Chromium	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Cobalt	ND		ug/L	6.0	04/23/2024	AB24-0423-01
Copper	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Iron	45		ug/L	20.0	04/23/2024	AB24-0423-01
Lead	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Lithium	ND		ug/L	10.0	04/23/2024	AB24-0423-01
Magnesium	ND		ug/L	1000.0	04/23/2024	AB24-0423-01
Molybdenum	ND		ug/L	5.0	04/23/2024	AB24-0423-01
Nickel	ND		ug/L	2.0	04/23/2024	AB24-0423-01
Potassium	387		ug/L	100.0	04/23/2024	AB24-0423-01
Selenium	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Silver	ND		ug/L	0.2	04/23/2024	AB24-0423-01
Sodium	1310		ug/L	1000.0	04/23/2024	AB24-0423-01
Thallium	ND		ug/L	2.0	04/23/2024	AB24-0423-01
Vanadium	ND		ug/L	2.0	04/23/2024	AB24-0423-01
Zinc	ND		ug/L	10.0	04/23/2024	AB24-0423-01
Mercury by EPA 7470A, Total, Aqueou	ıs			Aliquot #: 24-0	278-04-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	04/24/2024	AB24-0424-02
Anions by EPA 300.0 CCR Rule Analys	te List, Cl, F,	SO4, Aqu	ieous	Aliquot #: 24-0	278-04-C02-A01	Analyst: KDF
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	1580		ug/L	1000.0	04/19/2024	AB24-0419-01
Fluoride	ND		ug/L	1000.0	04/19/2024	AB24-0419-01
Sulfate	5850		ug/L	1000.0	04/19/2024	AB24-0419-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	278-04-C03-A01	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	29		mg/L	10.0	04/17/2024	AB24-0417-09
	24-1	0278 Page 1	1 of 25			

Report Date: 05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0278

 Field Sample ID:
 JHC-MW-15026
 Collect Date:
 04/15/2024

 Lab Sample ID:
 24-0278-04
 Collect Time:
 04/5/2024

Alkalinity by SM 2320B	Aliquot #: 24-	Analyst: DLS			
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	ND	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Bicarbonate	ND	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Carbonate	ND	ug/L	10.0	04/22/2024	AB24-0422-05

05/03/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0278

 Field Sample ID:
 JHC-MW-15027
 Collect Date:
 04/15/2024

 Lab Sample ID:
 24-0278-05
 Collect Time:
 05:32 PM

Metals by EPA 6020B: CCR Rule App	endix III-IV T	otal Metals	Ехр	Aliquot #: 24-0	278-05-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Arsenic	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Barium	20		ug/L	5.0	04/23/2024	AB24-0423-01
Beryllium	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Boron	25		ug/L	20.0	04/23/2024	AB24-0423-01
Cadmium	ND		ug/L	0.2	04/23/2024	AB24-0423-01
Calcium	13100		ug/L	1000.0	04/23/2024	AB24-0423-01
Chromium	1		ug/L	1.0	04/23/2024	AB24-0423-01
Cobalt	ND		ug/L	6.0	04/23/2024	AB24-0423-01
Copper	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Iron	576		ug/L	20.0	04/23/2024	AB24-0423-01
Lead	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Lithium	ND		ug/L	10.0	04/23/2024	AB24-0423-01
Magnesium	3290		ug/L	1000.0	04/23/2024	AB24-0423-01
Molybdenum	ND		ug/L	5.0	04/23/2024	AB24-0423-01
Nickel	ND		ug/L	2.0	04/23/2024	AB24-0423-01
Potassium	357		ug/L	100.0	04/23/2024	AB24-0423-01
Selenium	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Silver	ND		ug/L	0.2	04/23/2024	AB24-0423-01
Sodium	1610		ug/L	1000.0	04/23/2024	AB24-0423-01
Thallium	ND		ug/L	2.0	04/23/2024	AB24-0423-01
Vanadium	ND		ug/L	2.0	04/23/2024	AB24-0423-01
Zinc	ND		ug/L	10.0	04/23/2024	AB24-0423-01
Mercury by EPA 7470A, Total, Aqueo	us			Aliquot #: 24-0	278-05-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	04/24/2024	AB24-0424-02
Anions by EPA 300.0 CCR Rule Analy	rte List, CI, F	, SO4, Aqu	eous	Aliquot #: 24-0	278-05-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	ND		ug/L	1000.0	04/19/2024	AB24-0419-01
Fluoride	ND		ug/L	1000.0	04/19/2024	AB24-0419-01
Sulfate	5020		ug/L	1000.0	04/19/2024	AB24-0419-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	278-05-C03-A01	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	84		mg/L	10.0	04/17/2024	AB24-0417-10
	2	4 0279 Dago 13	of OF			

Report Date: 05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0278

 Field Sample ID:
 JHC-MW-15027
 Collect Date:
 04/15/2024

 Lab Sample ID:
 24-0278-05
 Collect Time:
 05:32 PM

Alkalinity by SM 2320B	Aliquot #: 24-0	Analyst: DLS			
Parameter(s)	Result Flag Ur		RL	Analysis Date	Tracking
Alkalinity Total	32000	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Bicarbonate	32000	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Carbonate	ND	ug/L	10.0	04/22/2024	AB24-0422-05

05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0278

 Field Sample ID:
 JHC-MW-15028
 Collect Date:
 04/15/2024

 Lab Sample ID:
 24-0278-06
 Collect Time:
 03:14 PM

Metals by EPA 6020B: CCR Rule App	endix III-IV T	otal Metals Exp	Aliquot #: 24-0	278-06-C01-A01	Analyst: EB				
Parameter(s)	Result	Flag Unit	s RL	Analysis Date	Tracking				
Antimony	ND	ug/L	1.0	04/23/2024	AB24-0423-01				
Arsenic	ND	ug/L	1.0	04/23/2024	AB24-0423-01				
Barium	5	ug/L	5.0	04/23/2024	AB24-0423-01				
Beryllium	ND	ug/L	1.0	04/23/2024	AB24-0423-01				
Boron	ND	ug/L	20.0	04/23/2024	AB24-0423-01				
Cadmium	ND	ug/L	0.2	04/23/2024	AB24-0423-01				
Calcium	13600	ug/L	1000.0	04/23/2024	AB24-0423-01				
Chromium	ND	ug/L	1.0	04/23/2024	AB24-0423-01				
Cobalt	ND	ug/L	6.0	04/23/2024	AB24-0423-01				
Copper	ND	ug/L	1.0	04/23/2024	AB24-0423-01				
Iron	51	ug/L	20.0	04/23/2024	AB24-0423-01				
Lead	ND	ug/L	1.0	04/23/2024	AB24-0423-01				
Lithium	ND	ug/L	10.0	04/23/2024	AB24-0423-01				
Magnesium	3180	ug/L	1000.0	04/23/2024	AB24-0423-01				
Molybdenum	ND	ug/L	5.0	04/23/2024	AB24-0423-01				
Nickel	ND	ug/L	2.0	04/23/2024	AB24-0423-01				
Potassium	275	ug/L	100.0	04/23/2024	AB24-0423-01				
Selenium	ND	ug/L	1.0	04/23/2024	AB24-0423-01				
Silver	ND	ug/L	0.2	04/23/2024	AB24-0423-01				
Sodium	ND	ug/L	1000.0	04/23/2024	AB24-0423-01				
Thallium	ND	ug/L	2.0	04/23/2024	AB24-0423-01				
Vanadium	ND	ug/L	2.0	04/23/2024	AB24-0423-01				
Zinc	ND	ug/L	10.0	04/23/2024	AB24-0423-01				
Mercury by EPA 7470A, Total, Aqueo	us		Aliquot #: 24-0	278-06-C01-A02	Analyst: CLE				
Parameter(s)	Result	Flag Unit	s RL	Analysis Date	Tracking				
Mercury	ND	ug/L	0.2	04/24/2024	AB24-0424-02				
Anions by EPA 300.0 CCR Rule Analy	/te List, Cl, F	, SO4, Aqueous	Aliquot #: 24-0	278-06-C02-A01	Analyst: KDR				
Parameter(s)	Result	Flag Unit	s RL	Analysis Date	Tracking				
Chloride	ND	ug/L	1000.0	04/19/2024	AB24-0419-01				
Fluoride	ND	ug/L	1000.0	04/19/2024	AB24-0419-01				
Sulfate	4120			04/19/2024	AB24-0419-01				
Total Dissolved Solids by SM 2540C			Aliquot #: 24-0	278-06-C03-A01	Analyst: CLE				
Parameter(s)	Result	Flag Unit	s RL	Analysis Date	Tracking				
Total Dissolved Solids	62	mg/L	10.0	04/17/2024	AB24-0417-10				
	2.	1 0279 Dago 15 of 25							

Report Date: 05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0278

 Field Sample ID:
 JHC-MW-15028
 Collect Date:
 04/15/2024

 Lab Sample ID:
 24-0278-06
 Collect Time:
 03:14 PM

Alkalinity by SM 2320B	Aliquot #: 24-0	Analyst: DLS			
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	47200	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Bicarbonate	47200	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Carbonate	ND	ug/L	10.0	04/22/2024	AB24-0422-05

05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0278

 Field Sample ID:
 DUP-01
 Collect Date:
 04/15/2024

 Lab Sample ID:
 24-0278-07
 Collect Time:
 12:00 AM

	ndix III-IV To			Aliquot #: 24-0	278-07-C01-A01	Analyst: EE		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Antimony	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Arsenic	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Barium	9		ug/L	5.0	04/23/2024	AB24-0423-01		
Beryllium	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Boron	ND		ug/L	20.0	04/23/2024	AB24-0423-01		
Cadmium	ND		ug/L	0.2	04/23/2024	AB24-0423-01		
Calcium	3110		ug/L	1000.0	04/23/2024	AB24-0423-01		
Chromium	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Cobalt	ND		ug/L	6.0	04/23/2024	AB24-0423-01		
Copper	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Iron	57		ug/L	20.0	04/23/2024	AB24-0423-01		
Lead	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Lithium	ND		ug/L	10.0	04/23/2024	AB24-0423-01		
Magnesium	ND		ug/L	1000.0	04/23/2024	AB24-0423-0		
Molybdenum	ND		ug/L	5.0	04/23/2024	AB24-0423-0		
Nickel	ND		ug/L	2.0	04/23/2024	AB24-0423-01		
Potassium	368		ug/L	100.0	04/23/2024	AB24-0423-01		
Selenium	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Silver	ND		ug/L	0.2	04/23/2024	AB24-0423-0		
Sodium	1290		ug/L	1000.0	04/23/2024	AB24-0423-0 ⁻		
Thallium	ND		ug/L	2.0	04/23/2024	AB24-0423-0		
Vanadium	ND		ug/L	2.0	04/23/2024	AB24-0423-01		
Zinc	ND		ug/L	10.0	04/23/2024	AB24-0423-01		
Mercury by EPA 7470A, Total, Aqueous	S			Aliquot #: 24-0	278-07-C01-A02	Analyst: CLE		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Mercury	ND		ug/L	0.2	04/24/2024	AB24-0424-02		
Anions by EPA 300.0 CCR Rule Analyte	e List, CI, F,	SO4, Aqu	ieous	Aliquot #: 24-0	278-07-C02-A01	Analyst: KDR		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Chloride	1590		ug/L	1000.0	04/19/2024	AB24-0419-01		
Fluoride	ND		ug/L	1000.0	04/19/2024	AB24-0419-01		
Sulfate	5870		ug/L	1000.0	04/19/2024	AB24-0419-01		
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	278-07-C03-A01	Analyst: CLE		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		

Report Date: 05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0278

 Field Sample ID:
 DUP-01
 Collect Date:
 04/15/2024

 Lab Sample ID:
 24-0278-07
 Collect Time:
 12:00 AM

Alkalinity by SM 2320B		Aliquot #: 24-0	Analyst: DLS		
Parameter(s) Result Flag Ur		Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	ND	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Bicarbonate	ND	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Carbonate	ND	ug/L	10.0	04/22/2024	AB24-0422-05

05/03/24

Report Date:

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0278

 Field Sample ID:
 FB-01
 Collect Date:
 04/15/2024

 Lab Sample ID:
 24-0278-08
 Collect Time:
 08:40 PM

Matrix: Water

	ppendix III-IV To			Aliquot #: 24-0	278-08-C01-A01	Analyst: EE		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Antimony	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Arsenic	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Barium	ND		ug/L	5.0	04/23/2024	AB24-0423-01		
Beryllium	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Boron	ND		ug/L	20.0	04/23/2024	AB24-0423-01		
Cadmium	ND		ug/L	0.2	04/23/2024	AB24-0423-01		
Calcium	ND		ug/L	1000.0	04/23/2024	AB24-0423-01		
Chromium	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Cobalt	ND		ug/L	6.0	04/23/2024	AB24-0423-01		
Copper	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Iron	ND		ug/L	20.0	04/23/2024	AB24-0423-01		
Lead	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Lithium	ND		ug/L	10.0	04/23/2024	AB24-0423-01		
Magnesium	ND		ug/L	1000.0	04/23/2024	AB24-0423-0		
Molybdenum	ND		ug/L	5.0	04/23/2024	AB24-0423-01		
Nickel	ND		ug/L	2.0	04/23/2024	AB24-0423-01		
Potassium	ND		ug/L	100.0	04/23/2024	AB24-0423-01		
Selenium	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Silver	ND		ug/L	0.2	04/23/2024	AB24-0423-01		
Sodium	ND		ug/L	1000.0	04/23/2024	AB24-0423-0 ⁻		
Thallium	ND		ug/L	2.0	04/23/2024	AB24-0423-01		
Vanadium	ND		ug/L	2.0	04/23/2024	AB24-0423-01		
Zinc	ND		ug/L	10.0	04/23/2024	AB24-0423-01		
Mercury by EPA 7470A, Total, Aqu	ieous			Aliquot #: 24-0	278-08-C01-A02	Analyst: CLE		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Mercury	ND		ug/L	0.2	04/24/2024	AB24-0424-02		
Anions by EPA 300.0 CCR Rule Ar	nalyte List, Cl, F,	SO4, Aqu	ieous	Aliquot #: 24-0	278-08-C02-A01	Analyst: KDR		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Chloride	ND		ug/L	1000.0	04/19/2024	AB24-0419-01		
Fluoride	ND		ug/L	1000.0	04/19/2024	AB24-0419-01		
Sulfate	ulfate ND				04/19/2024	AB24-0419-01		
Total Dissolved Solids by SM 2540	OC			Aliquot #: 24-0	278-08-C03-A01	Analyst: CLE		
								
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		

05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0278

 Field Sample ID:
 EB-01
 Collect Date:
 04/15/2024

 Lab Sample ID:
 24-0278-09
 Collect Time:
 08:25 PM

Matrix: Water

Metals by EPA 6020B: CCR Rule Appe	enaix III-IV TO	tai wetais	s ∈xp	Aliquot #: 24-0	278-09-C01-A01	Analyst: EB			
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking			
Antimony	ND		ug/L	1.0	04/23/2024	AB24-0423-01			
Arsenic	ND		ug/L	1.0	04/23/2024	AB24-0423-0			
Barium	ND		ug/L	5.0	04/23/2024	AB24-0423-01			
Beryllium	ND		ug/L	1.0	04/23/2024	AB24-0423-01			
Boron	ND		ug/L	20.0	04/23/2024	AB24-0423-01			
Cadmium	ND		ug/L	0.2	04/23/2024	AB24-0423-01			
Calcium	ND		ug/L	1000.0	04/23/2024	AB24-0423-01			
Chromium	ND		ug/L	1.0	04/23/2024	AB24-0423-01			
Cobalt	ND		ug/L	6.0	04/23/2024	AB24-0423-01			
Copper	ND		ug/L	1.0	04/23/2024	AB24-0423-01			
Iron	ND		ug/L	20.0	04/23/2024	AB24-0423-01			
Lead	ND		ug/L	1.0	04/23/2024	AB24-0423-01			
Lithium	ND		ug/L	10.0	04/23/2024	AB24-0423-01			
Magnesium	ND		ug/L	1000.0	04/23/2024	AB24-0423-01			
Molybdenum	ND		ug/L	5.0	04/23/2024	AB24-0423-0			
Nickel	ND		ug/L	2.0	04/23/2024	AB24-0423-0 ²			
Potassium	ND		ug/L	100.0	04/23/2024	AB24-0423-01			
Selenium	ND		ug/L	1.0	04/23/2024	AB24-0423-01			
Silver	ND		ug/L	0.2	04/23/2024	AB24-0423-01			
Sodium	ND		ug/L	1000.0	04/23/2024	AB24-0423-0			
Thallium	ND		ug/L	2.0	04/23/2024	AB24-0423-01			
Vanadium	ND		ug/L	2.0	04/23/2024	AB24-0423-01			
Zinc	ND		ug/L	10.0	04/23/2024	AB24-0423-01			
Mercury by EPA 7470A, Total, Aqueou	ıs			Aliquot #: 24-0	278-09-C01-A02	Analyst: CLE			
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking			
Mercury	ND		ug/L	0.2	04/24/2024	AB24-0424-02			
Anions by EPA 300.0 CCR Rule Analy	te List, CI, F,	SO4, Aqı	ieous	Aliquot #: 24-0	278-09-C02-A01	Analyst: KDR			
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking			
Chloride	ND		ug/L	1000.0	04/19/2024	AB24-0419-01			
Fluoride	ND		ug/L	1000.0	04/19/2024	AB24-0419-01			
Sulfate	· · · · · · · · · · · · · · · · · · ·								
				Aliquot #: 24-0	278-09-C03-A01	Analyst: CLE			
Total Dissolved Solids by SM 2540C									
Total Dissolved Solids by SM 2540C Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking			

05/03/24

Report Date:

Laboratory Services A CENTURY OF EXCELLENCE

JHC GW Monitoring - Background Wells (395496) Sample Site: Laboratory Project: 24-0278

Field Sample ID: JHC-MW-15025 Field MS

Collect Date: 04/15/2024 Lab Sample ID: 24-0278-10 Collect Time: 06:20 PM

Metals by EPA 6020B: CCR R	Aule Appendix III-IV 10	iai wietais EXP	Aliquot #: 24-0	278-10-C01-A01	Analyst: EB				
Parameter(s)	Result	Flag Unit	s RL	Analysis Date	Tracking				
Antimony	mony 112		1.0	04/23/2024	AB24-0423-01				
Arsenic	109	%	1.0	04/23/2024	AB24-0423-01				
Barium	113	%	5.0	04/23/2024	AB24-0423-01				
Beryllium	110	%	1.0	04/23/2024	AB24-0423-01				
Boron	109	%	20.0	04/23/2024	AB24-0423-01				
Cadmium	112	%	0.2	04/23/2024	AB24-0423-01				
Calcium	95.0	%	1000.0	04/23/2024	AB24-0423-01				
Chromium	110	%	1.0	04/23/2024	AB24-0423-01				
Cobalt	104	%	6.0	04/23/2024	AB24-0423-01				
Copper	103	%	1.0	04/23/2024	AB24-0423-01				
Iron	116	%	20.0	04/23/2024	AB24-0423-01				
Lead	105	%	1.0	04/23/2024	AB24-0423-01				
Lithium	106	%	10.0	04/23/2024	AB24-0423-01				
Magnesium	108	%	1000.0	04/23/2024	AB24-0423-01				
Molybdenum	112	%	5.0	04/23/2024	AB24-0423-01				
Nickel	107	%	2.0	04/23/2024	AB24-0423-01				
Potassium	101	%	% 100.0 04/23/2024		AB24-0423-01				
Selenium	107	%	1.0	04/23/2024	AB24-0423-01				
Silver	108	%	0.2	04/23/2024	AB24-0423-01				
Sodium	115	%	1000.0	04/23/2024	AB24-0423-01				
Thallium	108	%	2.0	04/23/2024	AB24-0423-01				
Vanadium	110	%	2.0	04/23/2024	AB24-0423-01				
Zinc	110	%	10.0	04/23/2024	AB24-0423-01				
Mercury by EPA 7470A, Total	l, Aqueous		Aliquot #: 24-0	278-10-C01-A02	Analyst: CLE				
Parameter(s)	Result	Flag Unit	s RL	Analysis Date	Tracking				
Mercury	97.0	%	0.2	04/24/2024	AB24-0424-02				
Anions by EPA 300.0 CCR Ru	ule Analyte List, Cl, F,	SO4, Aqueous	Aliquot #: 24-0	278-10-C02-A01	Analyst: KDR				
Parameter(s)	Result	Flag Unit	s RL	Analysis Date	Tracking				
Chloride	106	%	1000.0	04/19/2024	AB24-0419-01				
Fluoride	100	%	1000.0	04/19/2024	AB24-0419-01				
	Sulfate 96 %			1000.0 04/19/2024					

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0278

Field Sample ID: JHC-MW-15025 Field MSD

Lab Sample ID: 24-0278-11

Matrix: Groundwater

Chloride

Fluoride

Sulfate

Collect Date: 04/15/2024
Collect Time: 06:20 PM

04/19/2024

04/19/2024

04/19/2024

1000.0

1000.0

1000.0

AB24-0419-01

AB24-0419-01

AB24-0419-01

Report Date:

05/03/24

Metals by EPA 6020B: CCR Rule Appendix III-IV Total Metals Exp Aliquot #: 24-0278-11-C01-A01 Analyst: EB **Units** Parameter(s) Result Flag RL **Analysis Date Tracking** % Antimony 110 1.0 04/23/2024 AB24-0423-01 % Arsenic 110 1.0 04/23/2024 AB24-0423-01 **Barium** 110 % 5.0 04/23/2024 AB24-0423-01 Beryllium % 111 1.0 04/23/2024 AB24-0423-01 **Boron** 108 % 20.0 04/23/2024 AB24-0423-01 Cadmium 112 % 0.2 04/23/2024 AB24-0423-01 Calcium 100 % 1000.0 04/23/2024 AB24-0423-01 Chromium 109 % 04/23/2024 AB24-0423-01 1.0 % Cobalt 106 6.0 04/23/2024 AB24-0423-01 Copper 103 % 1.0 04/23/2024 AB24-0423-01 % Iron 109 20.0 04/23/2024 AB24-0423-01 Lead 104 % 04/23/2024 AB24-0423-01 1.0 Lithium 105 % 10.0 04/23/2024 AB24-0423-01 % Magnesium 113 1000.0 04/23/2024 AB24-0423-01 Molybdenum 111 % 5.0 04/23/2024 AB24-0423-01 Nickel 107 % 04/23/2024 AB24-0423-01 2.0 Potassium 106 % 100.0 04/23/2024 AB24-0423-01 % Selenium 111 1.0 04/23/2024 AB24-0423-01 Silver 105 % 0.2 04/23/2024 AB24-0423-01 Sodium 120 % 1000.0 04/23/2024 AB24-0423-01 2.0 **Thallium** 106 % 04/23/2024 AB24-0423-01 Vanadium 112 % 2.0 04/23/2024 AB24-0423-01 Zinc 110 % 10.0 04/23/2024 AB24-0423-01 Mercury by EPA 7470A, Total, Aqueous Aliquot #: 24-0278-11-C01-A02 **Analyst: CLE** Result Flag Units RL Parameter(s) **Analysis Date** Tracking Mercury 97.0 % 0.2 04/24/2024 AB24-0424-02 Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous Aliquot #: 24-0278-11-C02-A01 Analyst: KDR Parameter(s) Result Flag Units RL **Analysis Date Tracking**

%

%

%

107

100

95

A CENTURY OF EXCELLENCE

Analytical Report

Report Date: 05/03/24

Data Qualifiers	Exception Summary
	No exceptions occurred.

CONSUMERS ENERGY Chemistry Department

PROC CHEM-1.2.01 PAGE 1 OF 2 REVISION 4 ATTACHMENT A

General Standard Operating Procedure

TITLE: SAMPLE LOG-IN - SHIPMENT INSPECTION FORM

	Project Log-In Number: 24-0278											
	Inspection Date: 04-17-2024	Inspection By: EB										
	Sample Origin/Project Name: THC Q2- 2024	Background Wells										
	Shipment Delivered By: Enter the type of shipment carrie	er.										
		USPS Airborne										
	Tracking Number: Shipping Form Attached: Yes											
	Shipping Containers: Enter the type and number of shipp	ping containers received.										
	Cooler Cardboard Box Loose/Unpackaged Containers	Custom Case Envelope/Mailer Other										
	Condition of Shipment: Enter the as-received condition of	of the shipment container.										
	Damaged Shipment Observed: None	Dented Leaking										
	Shipment Security: Enter if any of the shipping container	rs were opened before receipt.										
	Shipping Containers Received: Opened \(\) \(\)	Sealed N/A										
	Enclosed Documents: Enter the type of documents enclosed with the shipment.											
	CoC Work Request	Air Data Sheet Other										
	Temperature of Containers: Measure the temperature of s											
	· ·	Samples Received on Ice: Yes_ No										
	M&TE # and Expiration 015402 / 5-23.											
	,											
	Number and Type of Containers: Enter the total number											
AH Test Paper	VOA (40mL or 60ml) VOA (40mL or 60ml) VOA (40mL or 60ml)	Other Broken Leaking										
EX 02-15-25	9-oz (amber glass jar)											
×11		Annual Control of the										
	125 mL (plastic)											
	24 mL vial (glass)											
		Tenness Control Contro										

lage 2 of 2 not needed 24-0278 Page 24 of 25

CHAIN OF CUSTODY

CONSUMERS ENERGY COMPANY – LABORATORY SERVICES

135 WEST TRAIL ST., JACKSON, MI 49201 • (517) 788-1251

		1
Page	of	

SAMPL	ING SITE / CU	JSTOMER:				PROJECT NUMBER: SAP CC or WO#:					ANALYSIS REQUESTED								QA REQUIREMENT:				
JHC	Q2-2024 Bac	kground We	lls			24-0278	REQUESTER:	Beth	any	Swa	nbe	rg		(Attach List if More Space is Needed)								QA REQUIREMENT:	
SAMPL	ING TEAM:					TURNAROUND TIME REQUIRED:																	□ NPDES
	CLE	+ LM	0			□ 24 HR □ 48 HR □ 3 DAYS □ STANDARD ☒ OTHER					_										⊠ TNI		
SEND	REPORT TO:	Joseph Fir	it			email:	phone:																□ ISO 17025
C	OPY TO:	JR Registe	r			MATRIX CODES: GW = Groundwater OX = Other _			CC	NTA	INI	ERS											□ 10 CFR 50 APP. B
		TRC				WW = Wastewater $SL = SludgeW = Water / Aqueous Liquid$ $A = Air$		PRESERVATIVE			/E	Metals			~	226	228				☐ INTERNAL INFO		
	LAB	SAMPLE CO	LLECT	TION	RIX	S = Soil / General Solid $WP = Wipe$ $O = Oil$ $WT = General Solid$		FOTAL #	100	m -	7 -			al Me	suc		Alkalinity	Radium 2	Radium 2				□ OTHER
	MPLE ID	DATE	TI	IME	MATRIX	FIELD SAMPLE ID / LOC	ATION	TOT	None	ONH	NaOl	HCI MeOH Other	Other	Total	Anions	TDS	Alka	Rad	Rad				REMARKS
24	-0278-01	4.15.21	1 20	V/C	GW	JHC-MW-15023		7	4	3				х	x	х	x	x	x				
	02		18	39	GW	JHC-MW-15024		7	4	3				х	х	х	x	х	х				
	-03		19	326	GW	JHC-MW-15025		7	4	3				х	х	х	х	х	x				
	-04		lu	151	GW	JHC-MW-15026	¥	7	4	3				х	х	х	x	х	х				
	-05		17	132	GW	JHC-MW-15027		7	4	3				x	x	х	x	x	x				
	-06		ie	514	GW	JHC-MW-15028		7	4	3				х	х	х	x	х	х				-
	-07		_	-	GW	DUP-01		7	4	3				х	х	x	x	x	х				
	-08		201	40	W	FB-01		5	2	3				х	х	х		х	х				
	-09		20	025	W	EB-01		5	2	3				х	x	x		х	х				
	-10		18	620	GW	JHC-MW-15025 MS		2	1	1				х	х								
\	-11	1	18	20	GW	JHC-MW-15025 MSD		2	1	1				х	х								
RELINQUISHED BY: DATE/ PELINQUISHED BY: DATE/		4.16	-24 1247	ECEIVED BY:								MME			(Van		Io.	M&	TE #•	015402			
RELINQUISHED BY: DATE				-17-24 0730	1278 Page 25 of 2	£											L°C				Date: <u>\$-23-24</u>		

135 W. Trail St. Jackson, MI 49201 phone 517-788-1251 fax 517-788-2533

To: JJFirlit, JH Campbell Complex

From: EBlaj, T-258

Date: May 03, 2024

Subject: JH CAMPBELL SOLID WASTE DISPOSAL AREA – GROUNDWATER MONITORING

2nd Ouarter, 2024 – Pond A Wells

CC: HDRegister, P22-521 Sarah Holmstrom, Project Manager

ADSantini, P20-215B-REM TRC Companies, Inc. 1540 Eisenhower Plac

1540 Eisenhower Place Ann Arbor, MI 48108

Chemistry Project: 24-0279

CE Laboratory Services conducted groundwater monitoring at the JH Campbell Solid Waste Disposal Area during the week of 04/15/2024, for the 2nd Quarter requirement, as specified in the Hydrogeological Monitoring Plan for the site. The samples were received for analysis by the Chemistry department on 04/17/2024.

Samples for Radium analysis have been subcontracted to Eurofins/TestAmerica, Inc. and their results are being reported separately. Please note that the subcontracted work is not reported under the CE laboratory scope of accreditation.

The report that follows presents the results of the requested analytical testing; the results apply only to the samples, as received. All samples have been analyzed in accordance with the 2016 TNI Standard and the applicable A2LA accreditation scope for Laboratory Services. Any exceptions to applicable test method criteria and standard compliance are noted in the Case Narrative or flagged with applicable qualifiers in the analytical results section.

Reviewed and approved by:

Emil Blaj Sr. Technical Analyst Project Lead

Testing performed in accordance with the A2LA scope of accredidation specified in the listed certificate.

The information contained in this report is the sole property of Consumers Energy. It cannot be reproduced except in full, and with consent from Consumers Energy, or the customer for which this report was issued.

CASE NARRATIVE

I. Sample Receipt

All samples were received within hold time and in good conditions; no anomalies were noted on the Sample Log-In Shipment Inspection Form during sample check-in. Identification of all samples included in the work order/project is provided in the sample summary section. Sample preservation upon receipt was verified by the sample custodian and confirmed to meet method requirements.

II. Methodology

Unless otherwise indicated, sample preparation and analysis was performed in accordance with the corresponding test methods from "Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100); SW-846, "Test Methods for Evaluating Solid Waste – Physical/Chemical Methods", USEPA (latest revisions), and Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 22nd Edition, 2012.

III. Results/Quality Control

Analytical results for this report are presented by laboratory sample ID, container & aliquot number. Results for the field blanks, field duplicates, and percent recoveries of the field matrix spike & matrix spike duplicate samples are included in the results section. Unless specifically noted in the case narrative, all method quality control requirements have been met. If any results are qualified, the corresponding data flags/qualifiers are listed on the last page of the results section. Any additional information on method performance, when applicable, is presented in this section of the case narrative. When data flags are not needed, the qualifiers text box on the last page is left blank, and a statement confirms that no exceptions occurred.

DEFINITIONS / QUALIFIERS

The following qualifiers and/or acronyms are used in the report where applicable:

Acronym	Description
RL	Reporting Limit
ND	Result not detected or below Reporting Limit
NT	Not a TNI Analyte
LCS	Laboratory Control Sample
LRB	Laboratory Reagent Blank (also referred to as Method Blank)
DUP	Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
RPD	Relative Percent Difference
MDL	Method Detection Limit
PQL	Practical Quantitation Limit
TDL	Target Detection Limit
SM	Standard Methods Compendium
Qualifier * B	Description Generic data flag, applicable description added in the corresponding notes section The analyte was detected in the LRB at a level which is significant relative to sample result
ט	The analyte was detected in the ERD at a rever which is significant relative to sample result

D	Reporting limit elevated due to dilution
E	Estimated due to result exceeding the linear range of the analyzer
H	The maximum recommended hold time was exceeded
I	Dilution required due to matrix interference; reporting limit elevated
J	Estimated due to result found above MDL but below PQL (or RL)
K	Reporting limit raised due to matrix interference
M	The precision for duplicate analysis was not met; RPD outside acceptance criteria
N	Non-homogeneous sample made analysis questionable
PI	Possible interference may have affected the accuracy of the laboratory result
Q	Matrix Spike or Matrix Spike Duplicate recovery outside acceptance criteria
R	Result confirmed by new sample preparation and reanalysis
X	Other notation required; comment listed in sample notes and/or case narrative

Work Order Sample Summary

Customer Name: JH Campbell Complex **Work Order ID:** Q2-2024 Pond A Wells

Date Received: 4/17/2024 **Chemistry Project:** 24-0279

Sample #	Field Sample ID	<u>Matrix</u>	Sample Date	<u>Site</u>
24-0279-01	JHC-MW-15006	Groundwater	04/16/2024 17:36	JHC GW Monitoring - Pond A Wells
24-0279-02	JHC-MW-15007R	Groundwater	04/16/2024 16:41	JHC GW Monitoring - Pond A Wells
24-0279-03	JHC-MW-15008R	Groundwater	04/16/2024 15:41	JHC GW Monitoring - Pond A Wells
24-0279-04	JHC-MW-15009R	Groundwater	04/16/2024 14:21	JHC GW Monitoring - Pond A Wells
24-0279-05	JHC-MW-15011R	Groundwater	04/16/2024 18:56	JHC GW Monitoring - Pond A Wells
24-0279-06	DUP-02	Groundwater	04/16/2024 00:00	JHC GW Monitoring - Pond A Wells
24-0279-07	FB-02	Water	04/16/2024 19:21	JHC GW Monitoring - Pond A Wells
24-0279-08	EB-02	Water	04/16/2024 19:29	JHC GW Monitoring - Pond A Wells
24-0279-09	JHC-MW-15007R MS	Groundwater	04/16/2024 16:41	JHC GW Monitoring - Pond A Wells
24-0279-10	JHC-MW-15007R MSD	Groundwater	04/16/2024 16:41	JHC GW Monitoring - Pond A Wells

05/03/24

Laboratory Services A CENTURY OF EXCELLENCE

JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: Sample Site:

24-0279 Collect Date: Field Sample ID: JHC-MW-15006 04/16/2024 Lab Sample ID: 24-0279-01 Collect Time: 05:36 PM

Flag	Units ug/L ug/L	RL 1.0 1.0 5.0 1.0 20.0 0.2 1000.0 1.0 6.0 1.0 20.0 1.0 1000.0 5.0 2.0 1000.0 1.0 0.2 1000.0 2.0	Analysis Date 04/23/2024	Tracking AB24-0423-01 AB24-0423-01
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 5.0 1.0 20.0 0.2 1000.0 1.0 6.0 1.0 20.0 1.0 100.0 5.0 2.0 100.0 1.0 0.2 1000.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 1.0 20.0 0.2 1000.0 1.0 6.0 1.0 20.0 1.0 10.0 1000.0 5.0 2.0 100.0 1.0 0.2 1000.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 20.0 0.2 1000.0 1.0 6.0 1.0 20.0 1.0 1000.0 5.0 2.0 100.0 1.0 0.2 1000.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	20.0 0.2 1000.0 1.0 6.0 1.0 20.0 1.0 100.0 5.0 2.0 100.0 1.0 0.2 1000.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 1000.0 1.0 6.0 1.0 20.0 1.0 100.0 5.0 2.0 100.0 1.0 0.2	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1000.0 1.0 6.0 1.0 20.0 1.0 10.0 1000.0 5.0 2.0 100.0 1.0 0.2 1000.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 6.0 1.0 20.0 1.0 10.0 1000.0 5.0 2.0 100.0 1.0 0.2	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	6.0 1.0 20.0 1.0 10.0 1000.0 5.0 2.0 100.0 1.0 0.2	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 20.0 1.0 10.0 1000.0 5.0 2.0 100.0 1.0 0.2	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	20.0 1.0 10.0 1000.0 5.0 2.0 100.0 1.0 0.2 1000.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 10.0 1000.0 5.0 2.0 100.0 1.0 0.2	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10.0 1000.0 5.0 2.0 100.0 1.0 0.2 1000.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1000.0 5.0 2.0 100.0 1.0 0.2 1000.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01
	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 2.0 100.0 1.0 0.2 1000.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01 AB24-0423-01
	ug/L ug/L ug/L ug/L ug/L ug/L	2.0 100.0 1.0 0.2 1000.0	04/23/2024 04/23/2024 04/23/2024 04/23/2024	AB24-0423-0° AB24-0423-0° AB24-0423-0° AB24-0423-0°
	ug/L ug/L ug/L ug/L ug/L	100.0 1.0 0.2 1000.0	04/23/2024 04/23/2024 04/23/2024	AB24-0423-0° AB24-0423-0° AB24-0423-0°
	ug/L ug/L ug/L ug/L	1.0 0.2 1000.0	04/23/2024 04/23/2024	AB24-0423-01 AB24-0423-01
	ug/L ug/L ug/L	0.2 1000.0	04/23/2024	AB24-0423-01
	ug/L ug/L	1000.0		
	ug/L		04/23/2024	AB24-0423-01
	-	2.0		
	ua/l		04/23/2024	AB24-0423-01
	ug/L	2.0	04/23/2024	AB24-0423-01
	ug/L	10.0	04/23/2024	AB24-0423-01
Mercury by EPA 7470A, Total, Aqueous			279-01-C01-A02	Analyst: CLE
Flag	Units	RL	Analysis Date	Tracking
	ug/L	0.2	04/23/2024	AB24-0423-03
SO4, Aqu	eous	Aliquot #: 24-0	279-01-C02-A01	Analyst: KDF
Flag	Units	RL	Analysis Date	Tracking
	ug/L	1000.0	04/22/2024	AB24-0422-0
	ug/L	1000.0	04/22/2024	AB24-0422-01
	ug/L	1000.0	04/22/2024	AB24-0422-01
		Aliquot #: 24-0	279-01-C03-A01	Analyst: LMC
	11.24	DI	Analysis Date	Tracking
Flag	Units	KL	7 tildiyolo Dato	
		ug/L ug/L ug/L	ug/L 1000.0 ug/L 1000.0 ug/L 1000.0 Aliquot #: 24-0	ug/L 1000.0 04/22/2024 ug/L 1000.0 04/22/2024 ug/L 1000.0 04/22/2024 Aliquot #: 24-0279-01-C03-A01

Report Date: 05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0279

 Field Sample ID:
 JHC-MW-15006
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0279-01
 Collect Time:
 05:36 PM

Alkalinity by SM 2320B			Aliquot #: 24-0	Analyst: DLS	
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	239000	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Bicarbonate	239000	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Carbonate	ND	ug/L	10.0	04/22/2024	AB24-0422-05

05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0279

 Field Sample ID:
 JHC-MW-15007R
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0279-02
 Collect Time:
 04:41 PM

Metals by EPA 6020B: CCR Rule App	endix III-IV T	otal Metals	з Ехр	Aliquot #: 24-0	279-02-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Arsenic	6		ug/L	1.0	04/23/2024	AB24-0423-01
Barium	211		ug/L	5.0	04/23/2024	AB24-0423-01
Beryllium	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Boron	1900		ug/L	20.0	04/23/2024	AB24-0423-01
Cadmium	ND		ug/L	0.2	04/23/2024	AB24-0423-01
Calcium	56600		ug/L	1000.0	04/23/2024	AB24-0423-01
Chromium	1		ug/L	1.0	04/23/2024	AB24-0423-01
Cobalt	ND		ug/L	6.0	04/23/2024	AB24-0423-01
Copper	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Iron	47		ug/L	20.0	04/23/2024	AB24-0423-01
Lead	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Lithium	15		ug/L	10.0	04/23/2024	AB24-0423-01
Magnesium	33100		ug/L	1000.0	04/23/2024	AB24-0423-01
Molybdenum	52		ug/L	5.0	04/23/2024	AB24-0423-01
Nickel	4		ug/L	2.0	04/23/2024	AB24-0423-01
Potassium	3540		ug/L	100.0	04/23/2024	AB24-0423-01
Selenium	8		ug/L	1.0	04/23/2024	AB24-0423-01
Silver	ND		ug/L	0.2	04/23/2024	AB24-0423-01
Sodium	15200		ug/L	1000.0	04/23/2024	AB24-0423-01
Thallium	ND		ug/L	2.0	04/23/2024	AB24-0423-01
Vanadium	15		ug/L	2.0	04/23/2024	AB24-0423-01
Zinc	ND		ug/L	10.0	04/23/2024	AB24-0423-01
Mercury by EPA 7470A, Total, Aqueous				Aliquot #: 24-0	279-02-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	04/23/2024	AB24-0423-03
Anions by EPA 300.0 CCR Rule Analy	∕te List, Cl, F	, SO4, Aqı	ieous	Aliquot #: 24-0	279-02-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	13900		ug/L	1000.0	04/22/2024	AB24-0422-01
Fluoride	ND		ug/L	1000.0	04/22/2024	AB24-0422-01
Sulfate	88400		ug/L	1000.0	04/22/2024	AB24-0422-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	279-02-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	414		mg/L	10.0	04/19/2024	AB24-0419-04
	2	4 0270 Daga	7 of 22			

Report Date: 05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0279

 Field Sample ID:
 JHC-MW-15007R
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0279-02
 Collect Time:
 04:41 PM

Alkalinity by SM 2320B			Aliquot #: 24-0	Analyst: DLS	
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	204000	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Bicarbonate	204000	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Carbonate	ND	ug/L	10.0	04/22/2024	AB24-0422-05

05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0279

 Field Sample ID:
 JHC-MW-15008R
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0279-03
 Collect Time:
 03:41 PM

	ndix III-IV To			Aliquot #: 24-0	279-03-C01-A01	Analyst: EE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	1		ug/L	1.0	04/23/2024	AB24-0423-01
Arsenic	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Barium	142		ug/L	5.0	04/23/2024	AB24-0423-01
Beryllium	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Boron	1190		ug/L	20.0	04/23/2024	AB24-0423-01
Cadmium	ND		ug/L	0.2	04/23/2024	AB24-0423-01
Calcium	56000		ug/L	1000.0	04/23/2024	AB24-0423-01
Chromium	1		ug/L	1.0	04/23/2024	AB24-0423-01
Cobalt	ND		ug/L	6.0	04/23/2024	AB24-0423-01
Copper	5		ug/L	1.0	04/23/2024	AB24-0423-01
Iron	ND		ug/L	20.0	04/23/2024	AB24-0423-01
Lead	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Lithium	18		ug/L	10.0	04/23/2024	AB24-0423-01
Magnesium	29700		ug/L	1000.0	04/23/2024	AB24-0423-01
Molybdenum	23		ug/L	5.0	04/23/2024	AB24-0423-01
Nickel	3		ug/L	2.0	04/23/2024	AB24-0423-01
Potassium	2480		ug/L	100.0	04/23/2024	AB24-0423-01
Selenium	7		ug/L	1.0	04/23/2024	AB24-0423-01
Silver	ND		ug/L	0.2	04/23/2024	AB24-0423-01
Sodium	17900		ug/L	1000.0	04/23/2024	AB24-0423-01
Thallium	ND		ug/L	2.0	04/23/2024	AB24-0423-01
Vanadium	ND		ug/L	2.0	04/23/2024	AB24-0423-01
Zinc	ND		ug/L	10.0	04/23/2024	AB24-0423-01
Mercury by EPA 7470A, Total, Aqueous				Aliquot #: 24-0	279-03-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	04/23/2024	AB24-0423-03
Anions by EPA 300.0 CCR Rule Analyte	e List, CI, F,	SO4, Aqı	ieous	Aliquot #: 24-0	279-03-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	14700		ug/L	1000.0	04/22/2024	AB24-0422-01
Fluoride	ND		ug/L	1000.0	04/22/2024	AB24-0422-01
Sulfate	80200		ug/L	1000.0	04/22/2024	AB24-0422-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	279-03-C03-A01	Analyst: LMC
	Desuit	Flag	Units	RL	Analysia Data	Tracking
Parameter(s)	Result	riay	Units	NL.	Analysis Date	Tracking

Report Date: 05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0279

 Field Sample ID:
 JHC-MW-15008R
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0279-03
 Collect Time:
 03:41 PM

Alkalinity by SM 2320B			Aliquot #: 24-0	Analyst: DLS	
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	204000	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Bicarbonate	204000	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Carbonate	ND	ug/L	10.0	04/22/2024	AB24-0422-05

05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0279

 Field Sample ID:
 JHC-MW-15009R
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0279-04
 Collect Time:
 02:21 PM

				Allquot #. 24-0	279-04-C01-A01	Analyst: EE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Arsenic	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Barium	342		ug/L	5.0	04/23/2024	AB24-0423-01
Beryllium	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Boron	2120		ug/L	20.0	04/23/2024	AB24-0423-01
Cadmium	ND		ug/L	0.2	04/23/2024	AB24-0423-01
Calcium	85600		ug/L	1000.0	04/23/2024	AB24-0423-01
Chromium	1		ug/L	1.0	04/23/2024	AB24-0423-01
Cobalt	ND		ug/L	6.0	04/23/2024	AB24-0423-01
Copper	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Iron	ND		ug/L	20.0	04/23/2024	AB24-0423-01
Lead	ND		ug/L	1.0	04/23/2024	AB24-0423-01
Lithium	16		ug/L	10.0	04/23/2024	AB24-0423-01
Magnesium	19800		ug/L	1000.0	04/23/2024	AB24-0423-01
Molybdenum	7		ug/L	5.0	04/23/2024	AB24-0423-01
Nickel	4		ug/L	2.0	04/23/2024	AB24-0423-01
Potassium	4110		ug/L	100.0	04/23/2024	AB24-0423-01
Selenium	242		ug/L	1.0	04/23/2024	AB24-0423-01
Silver	ND		ug/L	0.2	04/23/2024	AB24-0423-01
Sodium	7790		ug/L	1000.0	04/23/2024	AB24-0423-01
Thallium	ND		ug/L	2.0	04/23/2024	AB24-0423-01
Vanadium	8		ug/L	2.0	04/23/2024	AB24-0423-01
Zinc	ND		ug/L	10.0	04/23/2024	AB24-0423-01
Mercury by EPA 7470A, Total, Aqueous			Aliquot #: 24-0	279-04-C01-A02	Analyst: CLE	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	04/23/2024	AB24-0423-03
Anions by EPA 300.0 CCR Rule Analy	te List, CI, F,	SO4, Aqu	ieous	Aliquot #: 24-0	279-04-C02-A01	Analyst: KDF
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	7460		ug/L	1000.0	04/22/2024	AB24-0422-0
Fluoride	ND		ug/L	1000.0	04/22/2024	AB24-0422-0
Sulfate	55700		ug/L	1000.0	04/22/2024	AB24-0422-0
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	279-04-C03-A01	Analyst: LM0
	Result	Flag	Units	RL	Analysis Date	Tracking
Parameter(s)	Result	riay	Ullita	111	Alialysis Dale	Hacking

Report Date: 05/03/24

24-0279

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project:

 Field Sample ID:
 JHC-MW-15009R
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0279-04
 Collect Time:
 02:21 PM

Alkalinity by SM 2320B		Aliquot #: 24-0	Analyst: DLS		
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	239000	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Bicarbonate	239000	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Carbonate	ND	ug/L	10.0	04/22/2024	AB24-0422-05

05/03/24

Report Date:

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0279

 Field Sample ID:
 JHC-MW-15011R
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0279-05
 Collect Time:
 06:56 PM

Metals by EPA 6020B: CCR Rule Appe	ndix III-IV To	otal Metals	Ехр	Aliquot #: 24-0	279-05-C01-A01	Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Antimony	2		ug/L	1.0	04/23/2024	AB24-0423-01	
Arsenic	8		ug/L	1.0	04/23/2024	AB24-0423-01	
Barium	382		ug/L	5.0	04/23/2024	AB24-0423-01	
Beryllium	ND		ug/L	1.0	04/23/2024	AB24-0423-01	
Boron	3400		ug/L	20.0	04/23/2024	AB24-0423-01	
Cadmium	0.3		ug/L	0.2	04/23/2024	AB24-0423-01	
Calcium	60200		ug/L	1000.0	04/23/2024	AB24-0423-01	
Chromium	ND		ug/L	1.0	04/23/2024	AB24-0423-01	
Cobalt	ND		ug/L	6.0	04/23/2024	AB24-0423-01	
Copper	1		ug/L	1.0	04/23/2024	AB24-0423-01	
Iron	323		ug/L	20.0	04/23/2024	AB24-0423-01	
Lead	ND		ug/L	1.0	04/23/2024	AB24-0423-01	
Lithium	23		ug/L	10.0	04/23/2024	AB24-0423-01	
Magnesium	14300		ug/L	1000.0	04/23/2024	AB24-0423-01	
Molybdenum	18		ug/L	5.0	04/23/2024	AB24-0423-01	
Nickel	4		ug/L	2.0	04/23/2024	AB24-0423-01	
Potassium	4130		ug/L	100.0	04/23/2024	AB24-0423-01	
Selenium	77		ug/L	1.0	04/23/2024	AB24-0423-01	
Silver	ND		ug/L	0.2	04/23/2024	AB24-0423-01	
Sodium	12600		ug/L	1000.0	04/23/2024	AB24-0423-01	
Thallium	ND		ug/L	2.0	04/23/2024	AB24-0423-01	
Vanadium	29		ug/L	2.0	04/23/2024	AB24-0423-01	
Zinc	ND		ug/L	10.0	04/23/2024	AB24-0423-01	
Mercury by EPA 7470A, Total, Aqueou	s			Aliquot #: 24-0	279-05-C01-A02	Analyst: CLE	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Mercury	ND		ug/L	0.2	04/23/2024	AB24-0423-03	
Anions by EPA 300.0 CCR Rule Analyte	e List, Cl, F	, SO4, Aqu	ieous	Aliquot #: 24-0	279-05-C02-A01	Analyst: KDR	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Chloride	6830		ug/L	1000.0	04/22/2024	AB24-0422-01	
Fluoride	ND		ug/L	1000.0	04/22/2024	AB24-0422-01	
Sulfate	63900		ug/L	1000.0	04/22/2024	AB24-0422-01	
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	279-05-C03-A01	Analyst: LMO	
						<u> </u>	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	

Report Date: 05/03/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0279

 Field Sample ID:
 JHC-MW-15011R
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0279-05
 Collect Time:
 06:56 PM

Alkalinity by SM 2320B		Aliquot #: 24-0	Analyst: DLS		
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	168000	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Bicarbonate	168000	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Carbonate	ND	ug/L	10.0	04/22/2024	AB24-0422-05

05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0279

 Field Sample ID:
 DUP-02
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0279-06
 Collect Time:
 12:00 AM

Metals by EPA 6020B: CCR Rule Appe	279-06-C01-A01	Analyst: EB					
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Antimony	ND		ug/L	1.0	04/23/2024	AB24-0423-01	
Arsenic	ND		ug/L	1.0	04/23/2024	AB24-0423-01	
Barium	332		ug/L	5.0	04/23/2024	AB24-0423-01	
Beryllium	ND		ug/L	1.0	04/23/2024	AB24-0423-01	
Boron	2080		ug/L	20.0	04/23/2024	AB24-0423-01	
Cadmium	ND		ug/L	0.2	04/23/2024	AB24-0423-01	
Calcium	83600		ug/L	1000.0	04/23/2024	AB24-0423-01	
Chromium	1		ug/L	1.0	04/23/2024	AB24-0423-01	
Cobalt	ND		ug/L	6.0	04/23/2024	AB24-0423-01	
Copper	ND		ug/L	1.0	04/23/2024	AB24-0423-01	
Iron	25		ug/L	20.0	04/23/2024	AB24-0423-01	
Lead	ND		ug/L	1.0	04/23/2024	AB24-0423-01	
Lithium	16		ug/L	10.0	04/23/2024	AB24-0423-01	
Magnesium	20000		ug/L	1000.0	04/23/2024	AB24-0423-01	
Molybdenum	7		ug/L	5.0	04/23/2024	AB24-0423-01	
Nickel	4		ug/L	2.0	04/23/2024	AB24-0423-01	
Potassium	4180		ug/L	100.0	04/23/2024	AB24-0423-01	
Selenium	238		ug/L	1.0	04/23/2024	AB24-0423-01	
Silver	ND		ug/L	0.2	04/23/2024	AB24-0423-01	
Sodium	7830		ug/L	1000.0	04/23/2024	AB24-0423-01	
Thallium	ND		ug/L	2.0	04/23/2024	AB24-0423-01	
Vanadium	8		ug/L	2.0	04/23/2024	AB24-0423-01	
Zinc	ND		ug/L	10.0	04/23/2024	AB24-0423-01	
Mercury by EPA 7470A, Total, Aqueou	ıs			Aliquot #: 24-0	279-06-C01-A02	Analyst: CLE	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Mercury	ND		ug/L	0.2	04/23/2024	AB24-0423-03	
Anions by EPA 300.0 CCR Rule Analys	te List, Cl, I	F, SO4, Aqı	ueous	Aliquot #: 24-0	279-06-C02-A01	Analyst: KDR	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Chloride	7740		ug/L	1000.0	04/22/2024	AB24-0422-01	
Fluoride	ND		ug/L	1000.0	04/22/2024	AB24-0422-01	
Sulfate	58800		ug/L	1000.0	04/22/2024	AB24-0422-01	
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	279-06-C03-A01	Analyst: LMO	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Total Dissolved Solids	427		mg/L	10.0	04/19/2024	AB24-0419-04	
	2	4 0270 Daga 1	IE of 00				

Report Date: 05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0279

 Field Sample ID:
 DUP-02
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0279-06
 Collect Time:
 12:00 AM

Alkalinity by SM 2320B		Aliquot #: 24-0	Analyst: DLS		
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	238000	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Bicarbonate	238000	ug/L	10.0	04/22/2024	AB24-0422-05
Alkalinity Carbonate	ND	ug/L	10.0	04/22/2024	AB24-0422-05

05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0279

 Field Sample ID:
 FB-02
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0279-07
 Collect Time:
 07:21 PM

Matrix: Water

	ndix III-IV To			Aliquot #: 24-0	279-07-C01-A01	-		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Antimony	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Arsenic	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Barium	ND		ug/L	5.0	04/23/2024	AB24-0423-01		
Beryllium	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Boron	ND		ug/L	20.0	04/23/2024	AB24-0423-01		
Cadmium	ND		ug/L	0.2	04/23/2024	AB24-0423-01		
Calcium	ND		ug/L	1000.0	04/23/2024	AB24-0423-01		
Chromium	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Cobalt	ND		ug/L	6.0	04/23/2024	AB24-0423-01		
Copper	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Iron	20		ug/L	20.0	04/23/2024	AB24-0423-01		
Lead	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Lithium	ND		ug/L	10.0	04/23/2024	AB24-0423-01		
Magnesium	ND		ug/L	1000.0	04/23/2024	AB24-0423-01		
Molybdenum	ND		ug/L	5.0	04/23/2024	AB24-0423-01		
Nickel	ND		ug/L	2.0	04/23/2024	AB24-0423-01		
Potassium	ND		ug/L	100.0	04/23/2024	AB24-0423-01		
Selenium	ND		ug/L	1.0	04/23/2024	AB24-0423-01		
Silver	ND		ug/L	0.2	04/23/2024	AB24-0423-01		
Sodium	ND		ug/L	1000.0	04/23/2024	AB24-0423-01		
Thallium	ND		ug/L	2.0	04/23/2024	AB24-0423-01		
Vanadium	ND		ug/L	2.0	04/23/2024	AB24-0423-01		
Zinc	ND		ug/L	10.0	04/23/2024	AB24-0423-01		
Mercury by EPA 7470A, Total, Aqueous	8			Aliquot #: 24-0	279-07-C01-A02	Analyst: CLE		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Mercury	ND		ug/L	0.2	04/23/2024	AB24-0423-03		
Anions by EPA 300.0 CCR Rule Analyte	e List, CI, F,	SO4, Aqu	ieous	Aliquot #: 24-0	279-07-C02-A01	Analyst: KDR		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Chloride	ND		ug/L	1000.0	04/22/2024	AB24-0422-01		
Fluoride	ND		ug/L	1000.0	04/22/2024	AB24-0422-01		
Sulfate	ulfate ND			1000.0	04/22/2024	AB24-0422-01		
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	279-07-C03-A01	Analyst: LMC		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		

05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0279

 Field Sample ID:
 EB-02
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0279-08
 Collect Time:
 07:29 PM

Matrix: Water

	ndix III-IV To		<u> </u>	Aliquot #: 24-0	279-08-C01-A01	Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Antimony	ND		ug/L	1.0	04/23/2024	AB24-0423-01	
Arsenic	ND		ug/L	1.0	04/23/2024	AB24-0423-01	
Barium	ND		ug/L	5.0	04/23/2024	AB24-0423-01	
Beryllium	ND		ug/L	1.0	04/23/2024	AB24-0423-01	
Boron	ND		ug/L	20.0	04/23/2024	AB24-0423-01	
Cadmium	ND		ug/L	0.2	04/23/2024	AB24-0423-01	
Calcium	ND		ug/L	1000.0	04/23/2024	AB24-0423-01	
Chromium	ND		ug/L	1.0	04/23/2024	AB24-0423-01	
Cobalt	ND		ug/L	6.0	04/23/2024	AB24-0423-01	
Copper	ND		ug/L	1.0	04/23/2024	AB24-0423-01	
Iron	ND		ug/L	20.0	04/23/2024	AB24-0423-01	
Lead	ND		ug/L	1.0	04/23/2024	AB24-0423-01	
Lithium	ND		ug/L	10.0	04/23/2024	AB24-0423-01	
Magnesium	ND		ug/L	1000.0	04/23/2024	AB24-0423-01	
Molybdenum	ND		ug/L	5.0	04/23/2024	AB24-0423-01	
Nickel	ND		ug/L	2.0	04/23/2024	AB24-0423-01	
Potassium	ND		ug/L	100.0	04/23/2024	AB24-0423-01	
Selenium	ND		ug/L	1.0	04/23/2024	AB24-0423-01	
Silver	ND		ug/L	0.2	04/23/2024	AB24-0423-01	
Sodium	ND		ug/L	1000.0	04/23/2024	AB24-0423-0	
Thallium	ND		ug/L	2.0	04/23/2024	AB24-0423-01	
Vanadium	ND		ug/L	2.0	04/23/2024	AB24-0423-01	
Zinc	ND		ug/L	10.0	04/23/2024	AB24-0423-01	
Mercury by EPA 7470A, Total, Aqueous	5			Aliquot #: 24-0	279-08-C01-A02	Analyst: CLE	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Mercury	ND		ug/L	0.2	04/23/2024	AB24-0423-03	
Anions by EPA 300.0 CCR Rule Analyte	e List, CI, F,	SO4, Aqı	ieous	Aliquot #: 24-0	279-08-C02-A01	Analyst: KDR	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Chloride	ND		ug/L	1000.0	04/22/2024	AB24-0422-01	
Fluoride	ND		ug/L	1000.0	04/22/2024	AB24-0422-01	
Sulfate	Sulfate ND		ug/L	1000.0	04/22/2024	AB24-0422-01	
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	279-08-C03-A01	Analyst: LMC	
	Desult	Flag	Units	RL	Analysis Date	Tracking	
Parameter(s)	Result	riay	Units	NL.	Alialysis Date	Hacking	

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0279

Field Sample ID: JHC-MW-15007R MS

Lab Sample ID: 24-0279-09
Matrix: Groundwater

Collect Date: 04/16/2024
Collect Time: 04:41 PM

Aliquot #: 24-0279-09-C02-A01

Analysis Date

04/22/2024

04/22/2024

04/22/2024

RL

1000.0

1000.0

1000.0

Analyst: KDR

AB24-0422-01

AB24-0422-01

AB24-0422-01

Tracking

Report Date:

05/03/24

Metals by EPA 6020B: CCR Rule Appendix III-IV Total Metals Exp Aliquot #: 24-0279-09-C01-A01 Analyst: EB **Units** Parameter(s) Result Flag RL **Analysis Date** Tracking % Antimony 112 1.0 04/23/2024 AB24-0423-01 % Arsenic 109 1.0 04/23/2024 AB24-0423-01 **Barium** 116 % 5.0 04/23/2024 AB24-0423-01 % Beryllium 119 1.0 04/23/2024 AB24-0423-01 **Boron** 100 % 20.0 04/23/2024 AB24-0423-01 Cadmium 112 % 0.2 04/23/2024 AB24-0423-01 Calcium 96.2 % 1000.0 04/23/2024 AB24-0423-01 Chromium 107 % 04/23/2024 AB24-0423-01 1.0 % Cobalt 105 6.0 04/23/2024 AB24-0423-01 Copper 100 % 1.0 04/23/2024 AB24-0423-01 % Iron 114 20.0 04/23/2024 AB24-0423-01 Lead 99 % 04/23/2024 AB24-0423-01 1.0 Lithium 113 % 10.0 04/23/2024 AB24-0423-01 % Magnesium 112 1000.0 04/23/2024 AB24-0423-01 Molybdenum 111 % 5.0 04/23/2024 AB24-0423-01 % Nickel 104 04/23/2024 AB24-0423-01 2.0 Potassium 108 % 100.0 04/23/2024 AB24-0423-01 % Selenium 107 1.0 04/23/2024 AB24-0423-01 Silver 107 % 0.2 04/23/2024 AB24-0423-01 Sodium % 1000.0 110 04/23/2024 AB24-0423-01 **Thallium** 106 % 2.0 04/23/2024 AB24-0423-01 Vanadium 109 % 2.0 04/23/2024 AB24-0423-01 Zinc 108 % 10.0 04/23/2024 AB24-0423-01 Mercury by EPA 7470A, Total, Aqueous Aliquot #: 24-0279-09-C01-A02 **Analyst: CLE** Flag Units Result RL Parameter(s) **Analysis Date** Tracking Mercury 95.0 % 0.2 04/23/2024 AB24-0423-03

Flag

Units

%

%

%

Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous

Result

99

96

100

Parameter(s)

Chloride

Fluoride

Sulfate

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0279

Field Sample ID: JHC-MW-15007R MSD

Lab Sample ID: 24-0279-10 Matrix: Groundwater

Parameter(s)

Chloride

Fluoride

Sulfate

Collect Date: 04/16/2024
Collect Time: 04:41 PM

Report Date:

05/03/24

	D 14		11.4	ъ.	A	T		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Antimony	111		%	1.0	04/23/2024	AB24-0423-01		
Arsenic	108		%	1.0	04/23/2024	AB24-0423-01		
Barium	114		%	5.0	04/23/2024	AB24-0423-01		
Beryllium	118		%	1.0	04/23/2024	AB24-0423-01		
Boron	105		%	20.0	04/23/2024	AB24-0423-01		
Cadmium	111		%	0.2	04/23/2024	AB24-0423-01		
Calcium	93.2		%	1000.0	04/23/2024	AB24-0423-01		
Chromium	109		%	1.0	04/23/2024	AB24-0423-01		
Cobalt	106		%	6.0	04/23/2024	AB24-0423-01		
Copper	100		%	1.0	04/23/2024	AB24-0423-01		
Iron	108		%	20.0	04/23/2024	AB24-0423-01		
Lead	99		%	1.0	04/23/2024	AB24-0423-01		
Lithium	112		%	10.0	04/23/2024	AB24-0423-01		
Magnesium	102		%	1000.0	04/23/2024	AB24-0423-01		
Molybdenum	110		%	5.0	04/23/2024	AB24-0423-01		
Nickel	105		%	2.0	04/23/2024	AB24-0423-01		
Potassium	104		%	100.0	04/23/2024	AB24-0423-01		
Selenium	106		%	1.0	04/23/2024	AB24-0423-01		
Silver	107		%	0.2	04/23/2024	AB24-0423-01		
Sodium	102		%	1000.0	04/23/2024	AB24-0423-01		
Thallium	107		%	2.0	04/23/2024	AB24-0423-01		
Vanadium	111		%	2.0	04/23/2024	AB24-0423-01		
Zinc	109		%	10.0	04/23/2024	AB24-0423-01		
Mercury by EPA 7470A, Total,	lercury by EPA 7470A, Total, Aqueous				279-10-C01-A02	Analyst: CLE		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Mercury	95.0		%	0.2 04/23/2024		AB24-0423-03		

Flag

Result

97

96

101

Units

%

%

%

RL

1000.0

1000.0

1000.0

Analysis Date

04/22/2024

04/22/2024

04/22/2024

Tracking

AB24-0422-01

AB24-0422-01

AB24-0422-01

Report Date: 05/03/24

Consumers Energy
Count on Us®
Laboratory Services
A CENTURY OF EXCELLENCE

Data Qualifiers	Exception Summary
	No exceptions occurred.

CONSUMERS ENERGY

Chemistry Department

General Standard Operating Procedure

PROC CHEM-1.2.01 PAGE 1 OF 2 REVISION 4 ATTACHMENT A

TITLE: SAMPLE LOG-IN - SHIPMENT INSPECTION FORM

-	tion Date: _ ~ 17			Inspection By:		
Sampl	e Origin/Project Nam	e: JHC	Q2-201	ly Poud A Wells		
	ent Delivered By: En					
	Pony	FedEx	UPS	USPS	Airbo	orne
	Other/Land Carry (v	vhom)C	LE			
	Tracking Number:					
Shipp	ing Containers: Enter	the type and	number of ship	pping containers received.		
	Cooler	Cardboard B	ox	Custom Case	Envelope	/Mailer _
	Loose/Unpackaged			Other		
Condi	tion of Shipment: En	ter the as-rece	ived condition	n of the shipment container.		
	Damaged Shipment	Observed: No	one 🗸	Dented	Leak	ing
	Other					
Shipn	nent Security: Enter if	any of the sh	ipping contain	ners were opened before rec	eipt.	
	Shipping Containers			•	•	
.						
Enclo				losed with the shipment.		
	CoC_V W	ork Request_		Air Data Sheet	_ Other	
Temp	erature of Containers	: Measure the	temperature of	of several sample containers	.	
	As-Received Tempe	rature Range_	1.6-3.8 4	Samples Received on	Ice: Yes N	0
	M&TE # and Expira	ntion_0154	02/5-23	-24		
Numb	er and Type of Conta	iners: Enter	the total numb	per of sample containers rec	eived.	
- 1	**			Other		Leak
4 0-1	VOA (40mL or 60mL	L				
	Quart/Liter (g	16	A-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		programmy salar and order determine	
22		r)	-		***************************************	
	9-oz (amber glass ja					
22 -5	9-oz (amber glass ja 2-oz (amber glass)					-
	2-oz (amber glass)	<u>20</u>				

CHAIN OF CUSTODY

CONSUMERS ENERGY COMPANY – LABORATORY SERVICES

135 WEST TRAIL ST., JACKSON, MI 49201 • (517) 788-1251

Page _____ of ____

SAME	LING SITE / CU	JSTO	MER:			PROJECT NUMBER:	SAP CC or WO#:						ANALYSIS REQUESTED										
JHC	Q2-2024 Pon	d A V	Wells			24-0279	REQUESTER:	Beth	any	/ Sw	anb	erg			(A					ce is N)	QA REQUIREMENT:
SAME	LING TEAM:					TURNAROUND TIME REQUIRED:	·																☐ NPDES
	CLA	3				□ 24 HR □ 48 HR □ 3 DAYS □ STA	ANDARD 🛮 OTI	HER_															⊠ TNI
SENI	REPORT TO:	Jos	eph Firlit			email: phone:																	□ ISO 17025
(COPY TO:	JR	Register			MATRIX CODES: GW = Groundwater OX = Other_		CONTAINERS												☐ 10 CFR 50 APP. B			
		TR	C			WW = Wastewater SL = Sludge W = Water / Aqueous Liquid A = Air		PRESERVATIVE		IVE	1010			>	200	000	073			☐ INTERNAL INFO			
	LAB	SAN	IPLE COLI	LECTION	XIX	S = Soil / General Solid $WP = Wipe$ $O = Oil$ $WT = General Solid$		TOTAL#			7 -		T	Total Metals		2	linit	Radium 226					□ OTHER
SA	AMPLE ID		DATE	TIME	MATRIX	FIELD SAMPLE ID / LOC	CATION	TOT	None	HNO ₃	H ₂ SO	HCI	MeOF	Tota	A michael	TDS	Alkalinity	Radi	Dodium	Ivani			REMARKS
2	4-0279-01	4.	16-24	1736	GW	JHC-MW-15006		7	4	3				x	X	x	x	х	х				
	-02			1641	GW	JHC-MW-15007R		7	4	3				х	х	x	x	x	х				
	-03			1541	GW	JHC-MW-15008R		7	4	3				x	х	x	х	x	х				
	-04			1421	GW	JHC-MW-15009R		7	4	3				x	х	x	x	x	х				
	-05			1856	GW	JHC-MW-15011R		7	4	3				x	х	x	х	x	х				
	-06			-	GW	DUP-02		7	4	3				x	х	x	x	x	x				
	-07			1921	W	FB-02		5	2	3				x	x	x		x	х				
	-08			1929	W	EB-02		5	2	3				x	x	x		x	х				
	-09			1641	GW	JHC-MW-15007R MS		2	1					x	х								
,	-10	`		ابيرا	GW	JHC-MW-15007R MSD		2	1					x	х								
RELIN	QUISHED BY:				DATE/I		ECEIVED BY:							C	MC	IENT:	S:						
C	4subigh	w	+		4-17	24 0915																	
RELIN	QUISHED BY:			I	DATE/T	TIME: RE	ECEIVED BY:							R	eceiv	ed on	ce?	Y	es 🗆	No	M8	zTE#	e: 015402
							V							To	mpe	rature:	ا. ا	-3,	8 °(C	Cal	. Due	Date: _ 5-23-2
						24-0	1279 Page 23 of 2	3			-			-									

135 W. Trail St. Jackson, MI 49201 phone 517-788-1251 fax 517-788-2533

To: JJFirlit, JH Campbell Complex

From: EBlaj, T-258

Date: May 03, 2024

Subject: JH CAMPBELL SOLID WASTE DISPOSAL AREA – GROUNDWATER MONITORING

2nd Quarter, 2024 – Supplemental and GSI Wells

CC: HDRegister, P22-521 Sarah Holmstrom, Project Manager

ADSantini, P20-215B-REM TRC Companies, Inc. 1540 Eisenhower Place

Ann Arbor, MI 48108

Chemistry Project: 24-0281

CE Laboratory Services conducted groundwater monitoring at the JH Campbell Solid Waste Disposal Area during the week of 04/15/2024, for the 2nd Quarter requirement, as specified in the Hydrogeological Monitoring Plan for the site. Samples were not collected from MW-13; the well was dry. All other samples were received for analysis by the Chemistry department on 04/18/2024.

Samples for Radium analysis have been subcontracted to Eurofins/TestAmerica, Inc. and their results are being reported separately. Please note that the subcontracted work is not reported under the CE laboratory scope of accreditation.

The report that follows presents the results of the requested analytical testing; the results apply only to the samples, as received. All samples have been analyzed in accordance with the 2016 TNI Standard and the applicable A2LA accreditation scope for Laboratory Services. Any exceptions to applicable test method criteria and standard compliance are noted in the Case Narrative or flagged with applicable qualifiers in the analytical results section.

Reviewed and approved by:

Emil Blaj Sr. Technical Analyst Project Lead

Testing performed in accordance with the A2LA scope of accredidation specified in the listed certificate.

The information contained in this report is the sole property of Consumers Energy. It cannot be reproduced except in full, and with consent from Consumers Energy, or the customer for which this report was issued.

CASE NARRATIVE

I. Sample Receipt

All samples were received within hold time and in good conditions; no anomalies were noted on the Sample Log-In Shipment Inspection Form during sample check-in. Identification of all samples included in the work order/project is provided in the sample summary section. Sample preservation upon receipt was verified by the sample custodian and confirmed to meet method requirements.

II. Methodology

Unless otherwise indicated, sample preparation and analysis was performed in accordance with the corresponding test methods from "Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100); SW-846, "Test Methods for Evaluating Solid Waste – Physical/Chemical Methods", USEPA (latest revisions), and Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 22nd Edition, 2012.

III. Results/Quality Control

Analytical results for this report are presented by laboratory sample ID, container & aliquot number. Results for the field blanks, field duplicates, and percent recoveries of the field matrix spike & matrix spike duplicate samples are included in the results section. Unless specifically noted in the case narrative, all method quality control requirements have been met. If any results are qualified, the corresponding data flags/qualifiers are listed on the last page of the results section. Any additional information on method performance, when applicable, is presented in this section of the case narrative. When data flags are not needed, the qualifiers text box on the last page is left blank, and a statement confirms that no exceptions occurred.

DEFINITIONS / QUALIFIERS

The following qualifiers and/or acronyms are used in the report where applicable:

Acronym	Description
RL	Reporting Limit
ND	Result not detected or below Reporting Limit
NT	Not a TNI Analyte
LCS	Laboratory Control Sample
LRB	Laboratory Reagent Blank (also referred to as Method Blank)
DUP	Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
RPD	Relative Percent Difference
MDL	Method Detection Limit
PQL	Practical Quantitation Limit
TDL	Target Detection Limit
SM	Standard Methods Compendium
Qualifier *	Description
	Generic data flag, applicable description added in the corresponding notes section
В	The analyte was detected in the LRB at a level which is significant relative to sample result

D	Reporting limit elevated due to dilution
E	Estimated due to result exceeding the linear range of the analyzer
Н	The maximum recommended hold time was exceeded
I	Dilution required due to matrix interference; reporting limit elevated
J	Estimated due to result found above MDL but below PQL (or RL)
K	Reporting limit raised due to matrix interference
M	The precision for duplicate analysis was not met; RPD outside acceptance criteria
N	Non-homogeneous sample made analysis questionable
PI	Possible interference may have affected the accuracy of the laboratory result
Q	Matrix Spike or Matrix Spike Duplicate recovery outside acceptance criteria
R	Result confirmed by new sample preparation and reanalysis
X	Other notation required; comment listed in sample notes and/or case narrative

Work Order Sample Summary

Customer Name: JH Campbell Complex

Work Order ID: Q2-2024 Supplemental Wells

Date Received: 4/18/2024 Chemistry Project: 24-0281

Sample #	Field Sample ID	<u>Matrix</u>	Sample Date	<u>Site</u>
24-0281-01	MW-14S	Groundwater	04/16/2024 12:00	JHC GW Monitoring - Supplemental Wells
24-0281-02	PZ-23S	Groundwater	04/17/2024 13:40	JHC GW Monitoring - Supplemental Wells
24-0281-03	PZ-24S	Groundwater	04/16/2024 19:48	JHC GW Monitoring - Supplemental Wells
24-0281-04	PZ-24	Groundwater	04/16/2024 17:55	JHC GW Monitoring - Supplemental Wells
24-0281-05	PZ-40S	Groundwater	04/17/2024 11:03	JHC GW Monitoring - Supplemental Wells
24-0281-06	PZ-40	Groundwater	04/17/2024 09:38	JHC GW Monitoring - Supplemental Wells
24-0281-07	TW-19-05	Groundwater	04/16/2024 17:31	JHC GW Monitoring - Supplemental Wells
24-0281-08	TW-19-06A	Groundwater	04/16/2024 19:30	JHC GW Monitoring - Supplemental Wells
24-0281-09	DUP-07	Groundwater	04/16/2024 00:00	JHC GW Monitoring - Supplemental Wells
24-0281-10	TW-19-06A MS	Groundwater	04/16/2024 19:30	JHC GW Monitoring - Supplemental Wells
24-0281-11	TW-19-06A MSD	Groundwater	04/16/2024 19:30	JHC GW Monitoring - Supplemental Wells

05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0281

 Field Sample ID:
 MW-14S
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0281-01
 Collect Time:
 12:00 PM

		ndix III-IV Total Metals Exp			Aliquot #: 24-0281-01-C01-A01		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Antimony	ND		ug/L	1.0	04/22/2024	AB24-0422-08	
Arsenic	ND		ug/L	1.0	04/22/2024	AB24-0422-08	
Barium	13		ug/L	5.0	04/22/2024	AB24-0422-08	
Beryllium	ND		ug/L	1.0	04/22/2024	AB24-0422-08	
Boron	24		ug/L	20.0	04/22/2024	AB24-0422-08	
Cadmium	ND		ug/L	0.2	04/22/2024	AB24-0422-08	
Calcium	3500		ug/L	1000.0	04/22/2024	AB24-0422-08	
Chromium	ND		ug/L	1.0	04/22/2024	AB24-0422-08	
Cobalt	ND		ug/L	6.0	04/22/2024	AB24-0422-08	
Copper	1		ug/L	1.0	04/22/2024	AB24-0422-08	
Iron	262		ug/L	20.0	04/22/2024	AB24-0422-08	
Lead	ND		ug/L	1.0	04/22/2024	AB24-0422-08	
Lithium	ND		ug/L	10.0	04/22/2024	AB24-0422-08	
Magnesium	2390		ug/L	1000.0	04/22/2024	AB24-0422-08	
Molybdenum	6		ug/L	5.0	04/22/2024	AB24-0422-08	
Nickel	ND		ug/L	2.0	04/22/2024	AB24-0422-08	
Potassium	195		ug/L	100.0	04/22/2024	AB24-0422-08	
Selenium	1		ug/L	1.0	04/22/2024	AB24-0422-08	
Silver	ND		ug/L	0.2	04/22/2024	AB24-0422-08	
Sodium	1470		ug/L	1000.0	04/22/2024	AB24-0422-08	
Thallium	ND		ug/L	2.0	04/22/2024	AB24-0422-08	
Vanadium	ND		ug/L	2.0	04/22/2024	AB24-0422-08	
Zinc	ND		ug/L	10.0	04/22/2024	AB24-0422-08	
Mercury by EPA 7470A, Total, Aqueou	s			Aliquot #: 24-0	281-01-C01-A02	Analyst: CLE	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Mercury	ND		ug/L	0.2	04/23/2024	AB24-0422-04	
Anions by EPA 300.0 CCR Rule Analyt	e List, CI, F,	SO4, Aqı	ieous	Aliquot #: 24-0	281-01-C02-A01	Analyst: KDR	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Chloride	1210		ug/L	1000.0	04/22/2024	AB24-0422-01	
Fluoride	ND		ug/L	1000.0	04/22/2024	AB24-0422-01	
Sulfate	11300		ug/L	1000.0	04/22/2024	AB24-0422-01	
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	281-01-C03-A01	Analyst: LMC	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	

Report Date: 05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0281

 Field Sample ID:
 MW-14S
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0281-01
 Collect Time:
 12:00 PM

Alkalinity by SM 2320B			Aliquot #: 24	-0281-01-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Units	s RL	Analysis Date	Tracking
Alkalinity Total	ND	ug/L	10.0	04/24/2024	AB24-0424-01
Alkalinity Bicarbonate	ND	ug/L	10.0	04/24/2024	AB24-0424-01
Alkalinity Carbonate	ND	ug/L	10.0	04/24/2024	AB24-0424-01
Groundwater Metals by EPA 6020	A, Dissolved, JH	C List	Aliquot #: 24	-0281-01-C08-A01	Analyst: EB
Parameter(s)	Result	Flag Units	s RL	Analysis Date	Tracking
Antimony	ND	ug/L	1.0	04/29/2024	AB24-0429-01
Arsenic	ND	ug/L	1.0	04/29/2024	AB24-0429-01
Chromium	ND	ug/L	1.0	04/29/2024	AB24-0429-01
Lithium	ND	ug/L	10.0	04/29/2024	AB24-0429-01
Molybdenum	6	ug/L	5.0	04/29/2024	AB24-0429-01
Nickel	ND	ug/L	2.0	04/29/2024	AB24-0429-01
Selenium	ND	ug/L	1.0	04/29/2024	AB24-0429-01
Vanadium	ND	ug/L	2.0	04/29/2024	AB24-0429-01
Boron	ND	ug/L	20.0	04/29/2024	AB24-0429-01

05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0281

 Field Sample ID:
 PZ-23S
 Collect Date:
 04/17/2024

 Lab Sample ID:
 24-0281-02
 Collect Time:
 01:40 PM

Metals by EPA 6020B: CCR Rule Appe	ndix III-IV T	otal Metals	s Ехр	Aliquot #: 24-0	281-02-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Arsenic	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Barium	ND		ug/L	5.0	04/22/2024	AB24-0422-08
Beryllium	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Boron	ND		ug/L	20.0	04/22/2024	AB24-0422-08
Cadmium	ND		ug/L	0.2	04/22/2024	AB24-0422-08
Calcium	3990		ug/L	1000.0	04/22/2024	AB24-0422-08
Chromium	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Cobalt	ND		ug/L	6.0	04/22/2024	AB24-0422-08
Copper	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Iron	144		ug/L	20.0	04/22/2024	AB24-0422-08
Lead	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Lithium	ND		ug/L	10.0	04/22/2024	AB24-0422-08
Magnesium	ND		ug/L	1000.0	04/22/2024	AB24-0422-08
Molybdenum	ND		ug/L	5.0	04/22/2024	AB24-0422-08
Nickel	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Potassium	545		ug/L	100.0	04/22/2024	AB24-0422-08
Selenium	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Silver	ND		ug/L	0.2	04/22/2024	AB24-0422-08
Sodium	ND		ug/L	1000.0	04/22/2024	AB24-0422-08
Thallium	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Vanadium	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Zinc	ND		ug/L	10.0	04/22/2024	AB24-0422-08
Mercury by EPA 7470A, Total, Aqueou	s			Aliquot #: 24-0	281-02-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	04/23/2024	AB24-0422-04
Anions by EPA 300.0 CCR Rule Analyt	e List, CI, F	, SO4, Aqı	ieous	Aliquot #: 24-0	281-02-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	ND		ug/L	1000.0	04/22/2024	AB24-0422-01
Fluoride	ND		ug/L	1000.0	04/22/2024	AB24-0422-01
Sulfate	2410		ug/L	1000.0	04/22/2024	AB24-0422-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	281-02-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	127		mg/L	10.0	04/19/2024	AB24-0419-04
		4 0291 Daga	7 of 27			

Report Date: 05/03/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0281

 Field Sample ID:
 PZ-23S
 Collect Date:
 04/17/2024

 Lab Sample ID:
 24-0281-02
 Collect Time:
 01:40 PM

Alkalinity by SM 2320B			Aliquot #: 24	-0281-02-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Unit	s RL	Analysis Date	Tracking
Alkalinity Total	13900	ug/L	10.0	04/24/2024	AB24-0424-01
Alkalinity Bicarbonate	13900	ug/L	10.0	04/24/2024	AB24-0424-01
Alkalinity Carbonate	ND	ug/L	10.0	04/24/2024	AB24-0424-01
Groundwater Metals by EPA 60	20A, Dissolved, JHC	List	Aliquot #: 24	-0281-02-C08-A01	Analyst: EB
Parameter(s)	Result	Flag Unit	s RL	Analysis Date	Tracking
Antimony	ND	ug/L	1.0	04/29/2024	AB24-0429-01
Arsenic	ND	ug/L	1.0	04/29/2024	AB24-0429-01
Chromium	ND	ug/L	1.0	04/29/2024	AB24-0429-01
Lithium	ND	ug/L	10.0	04/29/2024	AB24-0429-01
Molybdenum	ND	ug/L	5.0	04/29/2024	AB24-0429-01
Nickel	ND	ug/L	2.0	04/29/2024	AB24-0429-01
Selenium	ND	ug/L	1.0	04/29/2024	AB24-0429-01
Vanadium	ND	ug/L	2.0	04/29/2024	AB24-0429-01
Boron	ND	ug/L	20.0	04/29/2024	AB24-0429-01

Laboratory Services
A CENTURY OF EXCELLENCE

JHC GW Monitoring - Supplemental Wells (395496)

Laboratory Project: 24-0281

Field Sample ID: **PZ-24S**Lab Sample ID: 24-0281-03

Sample Site:

Collect Date: 04/16/2024 Collect Time: 07:48 PM

Report Date:

05/03/24

Metals by EPA 6020B: CCR Rule Appe	endix III-IV To	tal Metals	з Ехр	Aliquot #: 24-0	281-03-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Arsenic	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Barium	62		ug/L	5.0	04/22/2024	AB24-0422-08
Beryllium	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Boron	ND		ug/L	20.0	04/22/2024	AB24-0422-08
Cadmium	ND		ug/L	0.2	04/22/2024	AB24-0422-08
Calcium	3620		ug/L	1000.0	04/22/2024	AB24-0422-08
Chromium	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Cobalt	ND		ug/L	6.0	04/22/2024	AB24-0422-08
Copper	1		ug/L	1.0	04/22/2024	AB24-0422-08
Iron	1850		ug/L	20.0	04/22/2024	AB24-0422-08
Lead	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Lithium	ND		ug/L	10.0	04/22/2024	AB24-0422-08
Magnesium	ND		ug/L	1000.0	04/22/2024	AB24-0422-08
Molybdenum	ND		ug/L	5.0	04/22/2024	AB24-0422-08
Nickel	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Potassium	380		ug/L	100.0	04/22/2024	AB24-0422-08
Selenium	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Silver	ND		ug/L	0.2	04/22/2024	AB24-0422-08
Sodium	1540		ug/L	1000.0	04/22/2024	AB24-0422-08
Thallium	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Vanadium	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Zinc	ND		ug/L	10.0	04/22/2024	AB24-0422-08
Mercury by EPA 7470A, Total, Aqueou	IS			Aliquot #: 24-0	281-03-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	04/23/2024	AB24-0422-04
Anions by EPA 300.0 CCR Rule Analy	te List, Cl, F,	SO4, Aqı	ieous	Aliquot #: 24-0	281-03-C02-A01	Analyst: KDF
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	1330		ug/L	1000.0	04/22/2024	AB24-0422-01
Fluoride	ND		ug/L	1000.0	04/22/2024	AB24-0422-01
Sulfate	13800		ug/L	1000.0	04/22/2024	AB24-0422-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	281-03-C03-A01	Analyst: LMC
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	68		mg/L	10.0	04/19/2024	AB24-0419-04
	24.	-0281 Page :	9 of 27			

Report Date: 05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0281

 Field Sample ID:
 PZ-24S
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0281-03
 Collect Time:
 07:48 PM

Alkalinity by SM 2320B				Aliquot #: 24	-0281-03-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Alkalinity Total	ND	u	g/L	10.0	04/24/2024	AB24-0424-01
Alkalinity Bicarbonate	ND	u	g/L	10.0	04/24/2024	AB24-0424-01
Alkalinity Carbonate	ND	u	g/L	10.0	04/24/2024	AB24-0424-01
Groundwater Metals by EPA 6	020A, Dissolved, JHC	List		Aliquot #: 24	-0281-03-C08-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND	u	g/L	1.0	04/29/2024	AB24-0429-01
Arsenic	ND	u	g/L	1.0	04/29/2024	AB24-0429-01
Chromium	ND	u	g/L	1.0	04/29/2024	AB24-0429-01
Lithium	ND	u	g/L	10.0	04/29/2024	AB24-0429-01
Molybdenum	ND	u	g/L	5.0	04/29/2024	AB24-0429-01
Nickel	ND	u	g/L	2.0	04/29/2024	AB24-0429-01
Selenium	ND	u	g/L	1.0	04/29/2024	AB24-0429-01
Vanadium	ND	u	g/L	2.0	04/29/2024	AB24-0429-01
Boron	ND	u	g/L	20.0	04/29/2024	AB24-0429-01

05/03/24

Report Date:

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0281

 Field Sample ID:
 PZ-24
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0281-04
 Collect Time:
 05:55 PM

Metals by EPA 6020B: CCR Rule Appe	endix III-IV To	tal Metals	Ехр	Aliquot #: 24-0	281-04-C01-A01	Analyst: EE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Arsenic	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Barium	26		ug/L	5.0	04/22/2024	AB24-0422-08
Beryllium	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Boron	185		ug/L	20.0	04/22/2024	AB24-0422-08
Cadmium	ND		ug/L	0.2	04/22/2024	AB24-0422-08
Calcium	37700		ug/L	1000.0	04/22/2024	AB24-0422-08
Chromium	1		ug/L	1.0	04/22/2024	AB24-0422-08
Cobalt	ND		ug/L	6.0	04/22/2024	AB24-0422-08
Copper	2		ug/L	1.0	04/22/2024	AB24-0422-08
Iron	9900		ug/L	20.0	04/22/2024	AB24-0422-08
Lead	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Lithium	ND		ug/L	10.0	04/22/2024	AB24-0422-08
Magnesium	11900		ug/L	1000.0	04/22/2024	AB24-0422-08
Molybdenum	8		ug/L	5.0	04/22/2024	AB24-0422-08
Nickel	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Potassium	1790		ug/L	100.0	04/22/2024	AB24-0422-08
Selenium	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Silver	ND		ug/L	0.2	04/22/2024	AB24-0422-08
Sodium	3620		ug/L	1000.0	04/22/2024	AB24-0422-08
Thallium	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Vanadium	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Zinc	31		ug/L	10.0	04/22/2024	AB24-0422-08
Mercury by EPA 7470A, Total, Aqueou	us			Aliquot #: 24-0	281-04-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	04/23/2024	AB24-0422-04
Anions by EPA 300.0 CCR Rule Analy	te List, CI, F,	SO4, Aqu	eous	Aliquot #: 24-0	281-04-C02-A01	Analyst: KDF
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	2370		ug/L	1000.0	04/22/2024	AB24-0422-01
Fluoride	ND		ug/L	1000.0	04/22/2024	AB24-0422-01
Sulfate	105000		ug/L	1000.0	04/23/2024	AB24-0422-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	281-04-C03-A01	Analyst: LMC
	Result	Flag	Units	RL	Analysis Date	Tracking
Parameter(s)	itesuit	i iay	Ullits	IXE.	Allalysis Date	Hacking

Report Date: 05/03/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0281

 Field Sample ID:
 PZ-24
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0281-04
 Collect Time:
 05:55 PM

Alkalinity by SM 2320B			A	Aliquot #: 24-	0281-04-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag U	Inits	RL	Analysis Date	Tracking
Alkalinity Total	47700	ug/	/L	10.0	04/24/2024	AB24-0424-01
Alkalinity Bicarbonate	47700	ug/	/L	10.0	04/24/2024	AB24-0424-01
Alkalinity Carbonate	ND	ug/	/L	10.0	04/24/2024	AB24-0424-01
Groundwater Metals by EPA 60)20A, Dissolved, JHC	List	A	Aliquot #: 24-	0281-04-C08-A01	Analyst: EB
Parameter(s)	Result	Flag U	nits	RL	Analysis Date	Tracking
Antimony	ND	ug/	/L	1.0	04/29/2024	AB24-0429-01
Arsenic	ND	ug/	/L	1.0	04/29/2024	AB24-0429-01
Chromium	ND	ug/	/L	1.0	04/29/2024	AB24-0429-01
Lithium	ND	ug/	/L	10.0	04/29/2024	AB24-0429-01
Molybdenum	8	ug/	/L	5.0	04/29/2024	AB24-0429-01
Nickel	ND	ug/	/L	2.0	04/29/2024	AB24-0429-01
Selenium	ND	ug/	/L	1.0	04/29/2024	AB24-0429-01
Vanadium	ND	ug/	/L	2.0	04/29/2024	AB24-0429-01
Boron	178	ug/	/L	20.0	04/29/2024	AB24-0429-01

05/03/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0281

 Field Sample ID:
 PZ-40S
 Collect Date:
 04/17/2024

 Lab Sample ID:
 24-0281-05
 Collect Time:
 11:03 AM

	ndix III-IV Total Metals Exp			Aliquot #: 24-0	Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Arsenic	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Barium	26		ug/L	5.0	04/22/2024	AB24-0422-08
Beryllium	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Boron	27		ug/L	20.0	04/22/2024	AB24-0422-08
Cadmium	ND		ug/L	0.2	04/22/2024	AB24-0422-08
Calcium	1750		ug/L	1000.0	04/22/2024	AB24-0422-08
Chromium	1		ug/L	1.0	04/22/2024	AB24-0422-08
Cobalt	ND		ug/L	6.0	04/22/2024	AB24-0422-08
Copper	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Iron	93		ug/L	20.0	04/22/2024	AB24-0422-08
Lead	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Lithium	ND		ug/L	10.0	04/22/2024	AB24-0422-08
Magnesium	ND		ug/L	1000.0	04/22/2024	AB24-0422-08
Molybdenum	ND		ug/L	5.0	04/22/2024	AB24-0422-08
Nickel	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Potassium	109		ug/L	100.0	04/22/2024	AB24-0422-08
Selenium	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Silver	ND		ug/L	0.2	04/22/2024	AB24-0422-08
Sodium	2050		ug/L	1000.0	04/22/2024	AB24-0422-08
Thallium	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Vanadium	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Zinc	ND		ug/L	10.0	04/22/2024	AB24-0422-08
Mercury by EPA 7470A, Total, Aqueous	5			Aliquot #: 24-0	281-05-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	04/23/2024	AB24-0422-04
Anions by EPA 300.0 CCR Rule Analyte	e List, CI, F,	SO4, Aqı	ieous	Aliquot #: 24-0	281-05-C02-A01	Analyst: KDF
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	1580		ug/L	1000.0	04/22/2024	AB24-0422-01
Fluoride	ND		ug/L	1000.0	04/22/2024	AB24-0422-01
Sulfate	6520		ug/L	1000.0	04/22/2024	AB24-0422-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	281-05-C03-A01	Analyst: LMC
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking

Report Date: 05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0281

 Field Sample ID:
 PZ-40S
 Collect Date:
 04/17/2024

 Lab Sample ID:
 24-0281-05
 Collect Time:
 11:03 AM

Alkalinity by SM 2320B			Aliquot #: 24	-0281-05-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	ND	ug/L	10.0	04/24/2024	AB24-0424-01
Alkalinity Bicarbonate	ND	ug/L	10.0	04/24/2024	AB24-0424-01
Alkalinity Carbonate	ND	ug/L	10.0	04/24/2024	AB24-0424-01
Groundwater Metals by EPA 6020A,	Dissolved, Jh	HC List	Aliquot #: 24	-0281-05-C08-A01	Analyst: EB
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Antimony	ND	ug/L	1.0	04/29/2024	AB24-0429-01
Arsenic	ND	ug/L	1.0	04/29/2024	AB24-0429-01
Chromium	ND	ug/L	1.0	04/29/2024	AB24-0429-01
Lithium	ND	ug/L	10.0	04/29/2024	AB24-0429-01
Molybdenum	ND	ug/L	5.0	04/29/2024	AB24-0429-01
Nickel	ND	ug/L	2.0	04/29/2024	AB24-0429-01
Selenium	ND	ug/L	1.0	04/29/2024	AB24-0429-01
Vanadium	ND	ug/L	2.0	04/29/2024	AB24-0429-01
Boron	20	ug/L	20.0	04/29/2024	AB24-0429-01

05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0281

 Field Sample ID:
 PZ-40
 Collect Date:
 04/17/2024

 Lab Sample ID:
 24-0281-06
 Collect Time:
 09:38 AM

	ndix III-IV Total Metals Exp			Aliquot #: 24-0	Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Arsenic	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Barium	17		ug/L	5.0	04/22/2024	AB24-0422-08
Beryllium	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Boron	210		ug/L	20.0	04/22/2024	AB24-0422-08
Cadmium	ND		ug/L	0.2	04/22/2024	AB24-0422-08
Calcium	13900		ug/L	1000.0	04/22/2024	AB24-0422-08
Chromium	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Cobalt	ND		ug/L	6.0	04/22/2024	AB24-0422-08
Copper	1		ug/L	1.0	04/22/2024	AB24-0422-08
Iron	32		ug/L	20.0	04/22/2024	AB24-0422-08
Lead	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Lithium	ND		ug/L	10.0	04/22/2024	AB24-0422-08
Magnesium	3230		ug/L	1000.0	04/22/2024	AB24-0422-08
Molybdenum	33		ug/L	5.0	04/22/2024	AB24-0422-08
Nickel	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Potassium	1110		ug/L	100.0	04/22/2024	AB24-0422-08
Selenium	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Silver	ND		ug/L	0.2	04/22/2024	AB24-0422-08
Sodium	4540		ug/L	1000.0	04/22/2024	AB24-0422-08
Thallium	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Vanadium	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Zinc	ND		ug/L	10.0	04/22/2024	AB24-0422-08
Mercury by EPA 7470A, Total, Aqueous	5			Aliquot #: 24-0	281-06-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	04/23/2024	AB24-0422-04
Anions by EPA 300.0 CCR Rule Analyte	e List, CI, F,	SO4, Aqı	ieous	Aliquot #: 24-0	281-06-C02-A01	Analyst: KDF
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	7960		ug/L	1000.0	04/22/2024	AB24-0422-01
Fluoride	ND		ug/L	1000.0	04/22/2024	AB24-0422-01
Sulfate	15700		ug/L	1000.0	04/22/2024	AB24-0422-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	281-06-C03-A01	Analyst: LMC
Devemeter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Parameter(s)		- 3			,	

Report Date: 05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0281

 Field Sample ID:
 PZ-40
 Collect Date:
 04/17/2024

 Lab Sample ID:
 24-0281-06
 Collect Time:
 09:38 AM

Alkalinity by SM 2320B			Aliquot #: 24	-0281-06-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Uni	ts RL	Analysis Date	Tracking
Alkalinity Total	33900	ug/L	10.0	04/24/2024	AB24-0424-01
Alkalinity Bicarbonate	33900	ug/L	10.0	04/24/2024	AB24-0424-01
Alkalinity Carbonate	ND	ug/L	10.0	04/24/2024	AB24-0424-01
Groundwater Metals by EPA 6020	A, Dissolved, JHO	C List	Aliquot #: 24	-0281-06-C08-A01	Analyst: EB
Parameter(s)	Result	Flag Uni	ts RL	Analysis Date	Tracking
Antimony	ND	ug/L	1.0	04/29/2024	AB24-0429-01
Arsenic	ND	ug/L	1.0	04/29/2024	AB24-0429-01
Chromium	ND	ug/L	1.0	04/29/2024	AB24-0429-01
Lithium	ND	ug/L	10.0	04/29/2024	AB24-0429-01
Molybdenum	34	ug/L	5.0	04/29/2024	AB24-0429-01
Nickel	ND	ug/L	2.0	04/29/2024	AB24-0429-01
Selenium	ND	ug/L	1.0	04/29/2024	AB24-0429-01
Vanadium	ND	ug/L	2.0	04/29/2024	AB24-0429-01
Boron	199	ug/L	20.0	04/29/2024	AB24-0429-01

05/03/24

Report Date:

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0281

 Field Sample ID:
 TW-19-05
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0281-07
 Collect Time:
 05:31 PM

Metals by EPA 6020B: CCR Rule Appendix III-IV Total Metals Exp Aliquot #: 24-0281-07-C01-A01								
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Antimony	2		ug/L	1.0	04/22/2024	AB24-0422-08		
Arsenic	ND		ug/L	1.0	04/22/2024	AB24-0422-08		
Barium	23		ug/L	5.0	04/22/2024	AB24-0422-08		
Beryllium	ND		ug/L	1.0	04/22/2024	AB24-0422-08		
Boron	81		ug/L	20.0	04/22/2024	AB24-0422-08		
Cadmium	ND		ug/L	0.2	04/22/2024	AB24-0422-08		
Calcium	24900		ug/L	1000.0	04/22/2024	AB24-0422-08		
Chromium	1		ug/L	1.0	04/22/2024	AB24-0422-08		
Cobalt	ND		ug/L	6.0	04/22/2024	AB24-0422-08		
Copper	3		ug/L	1.0	04/22/2024	AB24-0422-08		
Iron	24		ug/L	20.0	04/22/2024	AB24-0422-08		
Lead	ND		ug/L	1.0	04/22/2024	AB24-0422-08		
Lithium	29		ug/L	10.0	04/22/2024	AB24-0422-08		
Magnesium	7290		ug/L	1000.0	04/22/2024	AB24-0422-08		
Molybdenum	ND		ug/L	5.0	04/22/2024	AB24-0422-08		
Nickel	ND		ug/L	2.0	04/22/2024	AB24-0422-08		
Potassium	6930		ug/L	100.0	04/22/2024	AB24-0422-08		
Selenium	18		ug/L	1.0	04/22/2024	AB24-0422-08		
Silver	ND		ug/L	0.2	04/22/2024	AB24-0422-08		
Sodium	1340		ug/L	1000.0	04/22/2024	AB24-0422-08		
Thallium	ND		ug/L	2.0	04/22/2024	AB24-0422-08		
Vanadium	ND		ug/L	2.0	04/22/2024	AB24-0422-08		
Zinc	ND		ug/L	10.0	04/22/2024	AB24-0422-08		
Mercury by EPA 7470A, Total, Aqueo	us			Aliquot #: 24-0	281-07-C01-A02	Analyst: CLE		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Mercury	ND		ug/L	0.2	04/23/2024	AB24-0422-04		
Anions by EPA 300.0 CCR Rule Analy	rte List, CI, F,	SO4, Aqu	eous	Aliquot #: 24-0	281-07-C02-A01	Analyst: KDF		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Chloride	ND		ug/L	1000.0	04/22/2024	AB24-0422-01		
Fluoride	ND		ug/L	1000.0	04/22/2024	AB24-0422-01		
Sulfate	9720		ug/L	1000.0	04/22/2024	AB24-0422-01		
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	281-07-C03-A01	Analyst: LMC		
	D 1		11.14.	- DI		Topolis		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		

Report Date: 05/03/24

24-0281

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project:

 Field Sample ID:
 TW-19-05
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0281-07
 Collect Time:
 05:31 PM

Alkalinity by SM 2320B		Aliquot #: 24-0	Analyst: DLS		
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	95400	ug/L	10.0	04/24/2024	AB24-0424-01
Alkalinity Bicarbonate	95400	ug/L	10.0	04/24/2024	AB24-0424-01
Alkalinity Carbonate	ND	ug/L	10.0	04/24/2024	AB24-0424-01

05/03/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0281

 Field Sample ID:
 TW-19-06A
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0281-08
 Collect Time:
 07:30 PM

Metals by EPA 6020B: CCR Rule Appe	ndix III-IV T	otal Metals	s Ехр	Aliquot #: 24-0	281-08-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Arsenic	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Barium	5		ug/L	5.0	04/22/2024	AB24-0422-08
Beryllium	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Boron	1120		ug/L	20.0	04/22/2024	AB24-0422-08
Cadmium	ND		ug/L	0.2	04/22/2024	AB24-0422-08
Calcium	23700		ug/L	1000.0	04/22/2024	AB24-0422-08
Chromium	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Cobalt	ND		ug/L	6.0	04/22/2024	AB24-0422-08
Copper	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Iron	48		ug/L	20.0	04/22/2024	AB24-0422-08
Lead	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Lithium	ND		ug/L	10.0	04/22/2024	AB24-0422-08
Magnesium	2350		ug/L	1000.0	04/22/2024	AB24-0422-08
Molybdenum	29		ug/L	5.0	04/22/2024	AB24-0422-08
Nickel	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Potassium	3290		ug/L	100.0	04/22/2024	AB24-0422-08
Selenium	1		ug/L	1.0	04/22/2024	AB24-0422-08
Silver	ND		ug/L	0.2	04/22/2024	AB24-0422-08
Sodium	16700		ug/L	1000.0	04/22/2024	AB24-0422-08
Thallium	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Vanadium	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Zinc	ND		ug/L	10.0	04/22/2024	AB24-0422-08
Mercury by EPA 7470A, Total, Aqueou	s			Aliquot #: 24-0	281-08-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	04/23/2024	AB24-0422-04
Anions by EPA 300.0 CCR Rule Analyt	e List, CI, F	, SO4, Aqı	ieous	Aliquot #: 24-0	281-08-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	15500		ug/L	1000.0	04/22/2024	AB24-0422-01
Fluoride	ND		ug/L	1000.0	04/22/2024	AB24-0422-01
Sulfate	63800		ug/L	1000.0	04/22/2024	AB24-0422-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	281-08-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	159		mg/L	10.0	04/19/2024	AB24-0419-04
	2	4 0294 Dago 1	0 of 27			

Report Date: 05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0281

 Field Sample ID:
 TW-19-06A
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0281-08
 Collect Time:
 07:30 PM

Alkalinity by SM 2320B		Aliquot #: 24-	Analyst: DLS		
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	27700	ug/L	10.0	04/24/2024	AB24-0424-01
Alkalinity Bicarbonate	27700	ug/L	10.0	04/24/2024	AB24-0424-01
Alkalinity Carbonate	ND	ug/L	10.0	04/24/2024	AB24-0424-01

05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0281

 Field Sample ID:
 DUP-07
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0281-09
 Collect Time:
 12:00 AM

Metals by EPA 6020B: CCR Rule Appe	ndix III-IV T	otal Metals	s Ехр	Aliquot #: 24-0	281-09-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Arsenic	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Barium	60		ug/L	5.0	04/22/2024	AB24-0422-08
Beryllium	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Boron	ND		ug/L	20.0	04/22/2024	AB24-0422-08
Cadmium	ND		ug/L	0.2	04/22/2024	AB24-0422-08
Calcium	3570		ug/L	1000.0	04/22/2024	AB24-0422-08
Chromium	1		ug/L	1.0	04/22/2024	AB24-0422-08
Cobalt	ND		ug/L	6.0	04/22/2024	AB24-0422-08
Copper	1		ug/L	1.0	04/22/2024	AB24-0422-08
Iron	1860		ug/L	20.0	04/22/2024	AB24-0422-08
Lead	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Lithium	ND		ug/L	10.0	04/22/2024	AB24-0422-08
Magnesium	ND		ug/L	1000.0	04/22/2024	AB24-0422-08
Molybdenum	ND		ug/L	5.0	04/22/2024	AB24-0422-08
Nickel	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Potassium	369		ug/L	100.0	04/22/2024	AB24-0422-08
Selenium	ND		ug/L	1.0	04/22/2024	AB24-0422-08
Silver	ND		ug/L	0.2	04/22/2024	AB24-0422-08
Sodium	1560		ug/L	1000.0	04/22/2024	AB24-0422-08
Thallium	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Vanadium	ND		ug/L	2.0	04/22/2024	AB24-0422-08
Zinc	ND		ug/L	10.0	04/22/2024	AB24-0422-08
Mercury by EPA 7470A, Total, Aqueou	s			Aliquot #: 24-0	281-09-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	04/23/2024	AB24-0422-04
Anions by EPA 300.0 CCR Rule Analyt	e List, CI, F	, SO4, Aqı	ieous	Aliquot #: 24-0	281-09-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	1270		ug/L	1000.0	04/22/2024	AB24-0422-01
Fluoride	ND		ug/L	1000.0	04/22/2024	AB24-0422-01
Sulfate	13800		ug/L	1000.0	04/22/2024	AB24-0422-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	281-09-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	103		mg/L	10.0	04/19/2024	AB24-0419-04
	2.	1 0201 Dago	01 of 07			

Report Date: 05/03/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0281

 Field Sample ID:
 DUP-07
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0281-09
 Collect Time:
 12:00 AM

Alkalinity by SM 2320B		Aliquot #: 24-0	Analyst: DLS		
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	ND	ug/L	10.0	04/24/2024	AB24-0424-01
Alkalinity Bicarbonate	ND	ug/L	10.0	04/24/2024	AB24-0424-01
Alkalinity Carbonate	ND	ug/L	10.0	04/24/2024	AB24-0424-01

05/03/24

Report Date:

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0281

 Field Sample ID:
 TW-19-06A MS
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0281-10
 Collect Time:
 07:30 PM

Metals by EPA 6020B: CCR Ru	ne Appendix III-IV 10	itai wietais	Ехр	Aliquot #: 24-0	281-10-C01-A01	Analyst: El
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	108		%	1.0	04/22/2024	AB24-0422-08
Arsenic	109		%	1.0	04/22/2024	AB24-0422-08
Barium	111		%	5.0	04/22/2024	AB24-0422-08
Beryllium	105		%	1.0	04/22/2024	AB24-0422-08
Boron	107		%	20.0	04/22/2024	AB24-0422-08
Cadmium	107		%	0.2	04/22/2024	AB24-0422-08
Calcium	105		%	1000.0	04/22/2024	AB24-0422-08
Chromium	105		%	1.0	04/22/2024	AB24-0422-08
Cobalt	108		%	6.0	04/22/2024	AB24-0422-08
Copper	107		%	1.0	04/22/2024	AB24-0422-08
Iron	95		%	20.0	04/22/2024	AB24-0422-08
Lead	106		%	1.0	04/22/2024	AB24-0422-08
Lithium	102		%	10.0	04/22/2024	AB24-0422-08
Magnesium	102		%	1000.0	04/22/2024	AB24-0422-08
Molybdenum	109		%	5.0	04/22/2024	AB24-0422-08
Nickel	108		%	2.0	04/22/2024	AB24-0422-08
Potassium	104		%	100.0	04/22/2024	AB24-0422-08
Selenium	105		%	1.0	04/22/2024	AB24-0422-08
Silver	104		%	0.2	04/22/2024	AB24-0422-08
Sodium	91.6		%	1000.0	04/22/2024	AB24-0422-08
Thallium	108		%	2.0	04/22/2024	AB24-0422-08
Vanadium	107		%	2.0	04/22/2024	AB24-0422-08
Zinc	109		%	10.0	04/22/2024	AB24-0422-08
Mercury by EPA 7470A, Total,	Aqueous			Aliquot #: 24-0	281-10-C01-A02	Analyst: CLI
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	95.0		%	0.2	04/23/2024	AB24-0422-04
Anions by EPA 300.0 CCR Rul	e Analyte List, Cl, F,	SO4, Aqu	eous	Aliquot #: 24-0	281-10-C02-A01	Analyst: KDI
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	104		%	1000.0	04/22/2024	AB24-0422-0
Fluoride	99		%	1000.0	04/22/2024	AB24-0422-0
Sulfate	103					

05/03/24

Report Date:

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0281

 Field Sample ID:
 TW-19-06A MSD
 Collect Date:
 04/16/2024

 Lab Sample ID:
 24-0281-11
 Collect Time:
 07:30 PM

Metals by EPA 6020B: CCR Rul	e Appendix III-IV TO	lai Welais	⊏xþ	Aliquot #: 24-0	281-11-C01-A01	Analyst: El
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	108		%	1.0	04/22/2024	AB24-0422-08
Arsenic	108		%	1.0	04/22/2024	AB24-0422-08
Barium	109		%	5.0	04/22/2024	AB24-0422-08
Beryllium	103		%	1.0	04/22/2024	AB24-0422-08
Boron	103	,	%	20.0	04/22/2024	AB24-0422-08
Cadmium	106	,	%	0.2	04/22/2024	AB24-0422-08
Calcium	96.1	,	%	1000.0	04/22/2024	AB24-0422-08
Chromium	106		%	1.0	04/22/2024	AB24-0422-08
Cobalt	108	,	%	6.0	04/22/2024	AB24-0422-08
Copper	105	,	%	1.0	04/22/2024	AB24-0422-08
Iron	115	,	%	20.0	04/22/2024	AB24-0422-08
Lead	106	,	%	1.0	04/22/2024	AB24-0422-08
Lithium	102		%	10.0	04/22/2024	AB24-0422-08
Magnesium	105		%	1000.0	04/22/2024	AB24-0422-08
Molybdenum	108		%	5.0	04/22/2024	AB24-0422-08
Nickel	106		%	2.0	04/22/2024	AB24-0422-08
Potassium	103	1	%	100.0	04/22/2024	AB24-0422-08
Selenium	105		%	1.0	04/22/2024	AB24-0422-08
Silver	104		%	0.2	04/22/2024	AB24-0422-08
Sodium	100	1	%	1000.0	04/22/2024	AB24-0422-08
Thallium	109		%	2.0	04/22/2024	AB24-0422-08
Vanadium	108		%	2.0	04/22/2024	AB24-0422-08
Zinc	110		%	10.0	04/22/2024	AB24-0422-08
Mercury by EPA 7470A, Total, A	Aqueous			Aliquot #: 24-0	281-11-C01-A02	Analyst: CLI
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	95.0		%	0.2	04/23/2024	AB24-0422-04
Anions by EPA 300.0 CCR Rule	Analyte List, CI, F,	SO4, Aque	eous	Aliquot #: 24-0	281-11-C02-A01	Analyst: KDF
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	105		%	1000.0	04/22/2024	AB24-0422-0
Fluoride	101		%	1000.0	04/22/2024	AB24-0422-01

A CENTURY OF EXCELLENCE

Analytical Report

Report Date: 05/03/24

Data Qualifiers	Exception Summary
	No exceptions occurred.

CONSUMERS ENĖRGY '

Chemistry Department

General Standard Operating Procedure

PROC CHEM-1.2.01 PAGE 1 OF 2 REVISION 4 ATTACHMENT A

TITLE: SAMPLE LOG-IN - SHIPMENT INSPECTION FORM

Project Log-In Number: 24-0281		
Inspection Date: 4.18.24	Inspection By: _ Um 6	/
Sample Origin/Project Name: 11-C Q2-2	024 Supplemental	Wells
Shipment Delivered By: Enter the type of shipment	carrier.	
Pony FedEx U	UPS USPS	Airborne
Other/Hand Carry (whom) <u>VI</u> V		
Tracking Number:		
Shipping Containers: Enter the type and number of	shipping containers received.	
Cooler Cardboard Box	Custom Case	Envelope/Mailer
Loose/Unpackaged Containers	Other	
Condition of Shipment: Enter the as-received condi	,	
Damaged Shipment Observed: None	Dented	Leaking
Damaged Shipment Observed: None	,5	/ ·
Shipment Security: Enter if any of the shipping con		
200 ON V ON ON ON		
Shipping Containers Received: Opened		
Enclosed Documents: Enter the type of documents of	3	
CoC Work Request	Air Data Sheet	Other
Temperature of Containers: Measure the temperatu	re of several sample containers.	
As-Received Temperature Range 14 - 2	Samples Received on Ice	e: Yes V No
M&TE # and Expiration 615402 5.	72.24	
		a.J
Number and Type of Containers: Enter the total m	7	
Container Type Water Soil VOA (40mL or 60ml) \ \lambda	Other	Broken Leaking
VOA (40mL or 60mI)	- 3	`\.
9-oz (amber glass jar)	· · · · · · · · · · · · · · · · · · ·	*
2-oz (amber glass)	1	
125 mL (plastic) 28	9	
24 mL vial (glass)		
500 mL (plastic)	1 .	
Other 150 ml pastic 9		A.

CHAIN OF CUSTODY

CONSUMERS ENERGY COMPANY - LABORATORY SERVICES

135 WEST TRAIL ST., JACKSON, MI 49201 • (517) 788-1251

)

SAME	PLING SITE / CU	JSTOMER:			PROJECT NUMBER:	SAP CC or WO	#:							Δ	NAI	VSI	SRF	FOLIE	TOTE	- T			
JHC Q2-2024 Supplemental Wells		24-0281	REQUESTER: Bethany Swanberg						ANALYSIS REQUESTED (Attach List if More Space is Needed))	QA REQUIREM	ENT:					
SAMP	LING TEAM:	KDR, L	MO	_	TURNAROUND TIME REQUIRED: □ 24 HR □ 48 HR □ 3 DAYS □ STA	NDARD ⊠ OTH	ER_					_										□ NPDES ☑ TNI	
SENI	O REPORT TO:	Joseph Firlit			email:	phone:								1.50								□ ISO 17025	
(COPY TO:	JR Register			MATRIX CODES: GW = Groundwater OX = Other			CC	NTA	INE	RS	×.							tals			☐ 10 CFR 50 APP.	В
		TRC			WW = Wastewater SL = Sludge W = Water / Aqueous Liquid A = Air			P	RES	ERV.	ATIV	Έ	tals			>	26	228	i Me			☐ INTERNAL INF	O.
	LAB	SAMPLE COLI	LECTION	RIX	S = Soil / General Solid WP = Wipe O = Oil WT = General	al Waste	AL#		m -	, T			Total Metals	suc		Alkalinity	Radium 226	ium 2	Dissolved Metals			□ OTHER	
SA	AMPLE ID	DATE	TIME	MATRIX	FIELD SAMPLE ID / LOC	ATION	TOTAL	None	HNO	NaOH	HCI	Other	Tota	Anions	TDS	Alka	Rad	Radium	Diss			REMARKS	
2	4-0281-01	4.16.24	12:00	GW	MW-14S		8	4	4				x	x	х	x	х	x	х				
	-02	4.17.24	13:40	GW	PZ-23S		8	4	4				x	x	x	x	x	х	х				
	-03	4.16.24	19:48	GW	PZ-24S		8	4	4				x	x	x	x	х	x	х				
	-04	4.16.24	17:55	GW	PZ-24		8	4	4				x	x	x	x	x	х	x			*	
	-05	4.17.24	11:03	GW	PZ-40S		8	4	4				x	x	x	х	x	х	х				
	-06	4.17.24	09:38	GW	PZ-40		8	4	4				x	x	х	x	x	х	x				
	-07	4-16-24	17:31	GW	TW-19-05		7	4	3				x	x	х	x	х	х					
	-08	4.6.24	19:30	GW	TW-19-06A		7	4	3				x	x	x	x	x	х					
	-09	4-16-24	_	GW	DUP-07		7	4	3				x	х	x	x	x	x					
	-10	4.6.24	14:30	GW	TW-19-06A MS		2	1	1				x	x									
,	-11	4-16-24	19:30	GW	TW-19-06A MSD		2	1	1	-			x	x									
						×																	
	QUISHED BY:	Okepse		OATE/1 4 · 18	3.24 1234	CEIVED BY:							pt	per	ot	20				p. 2			
	QUISHED BY:			DATE/I	TIME: REO	CEIVED BY:																015402 5.2 Date: 5.23.24	
					24-0	281 Page 27 of 2	-																

135 W. Trail St. Jackson, MI 49201 phone 517-788-1251 fax 517-788-2533

To: JJFirlit, JH Campbell Complex

From: EBlaj, T-258

Date: October 31, 2024

Subject: JH CAMPBELL SOLID WASTE DISPOSAL AREA - GROUNDWATER MONITORING

4th Quarter, 2024 – Background Wells

CC: HDRegister, P22-521 Sarah Holmstrom, Project Manager

ADSantini, P20-215B-REM TRC Companies, Inc. 1540 Eisenhower Place

Ann Arbor, MI 48108

Chemistry Project: 24-0857

CE Laboratory Services conducted groundwater monitoring at the JH Campbell Solid Waste Disposal Area during the week of 10/14/2024, for the 4th Quarter requirement, as specified in the Hydrogeological Monitoring Plan for the site. The samples were received for analysis by the Chemistry department on 10/16/2024.

Samples for Radium analysis have been subcontracted to Eurofins/TestAmerica, Inc. and their results are being reported separately. Please note that the subcontracted work is not reported under the CE laboratory scope of accreditation.

The report that follows presents the results of the requested analytical testing; the results apply only to the samples, as received. All samples have been analyzed in accordance with the 2016 TNI Standard and the applicable A2LA accreditation scope for Laboratory Services. Any exceptions to applicable test method criteria and standard compliance are noted in the Case Narrative or flagged with applicable qualifiers in the analytical results section.

Reviewed and approved by:

Emil Blaj Sr. Technical Analyst Project Lead

Testing performed in accordance with the A2LA scope of accredidation specified in the listed certificate.

The information contained in this report is the sole property of Consumers Energy. It cannot be reproduced except in full, and with consent from Consumers Energy, or the customer for which this report was issued.

CASE NARRATIVE

I. Sample Receipt

All samples were received within hold time and in good conditions; no anomalies were noted on the Sample Log-In Shipment Inspection Form during sample check-in. Identification of all samples included in the work order/project is provided in the sample summary section. Sample preservation upon receipt was verified by the sample custodian and confirmed to meet method requirements.

II. Methodology

Unless otherwise indicated, sample preparation and analysis was performed in accordance with the corresponding test methods from "Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100); SW-846, "Test Methods for Evaluating Solid Waste – Physical/Chemical Methods", USEPA (latest revisions), and Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 22nd Edition, 2012.

III. Results/Quality Control

Analytical results for this report are presented by laboratory sample ID, container & aliquot number. Results for the field blanks, field duplicates, and percent recoveries of the field matrix spike & matrix spike duplicate samples are included in the results section. Unless specifically noted in the case narrative, all method quality control requirements have been met. If any results are qualified, the corresponding data flags/qualifiers are listed on the last page of the results section. Any additional information on method performance, when applicable, is presented in this section of the case narrative. When data flags are not needed, the qualifiers text box on the last page is left blank, and a statement confirms that no exceptions occurred.

DEFINITIONS / QUALIFIERS

The following qualifiers and/or acronyms are used in the report where applicable:

Acronym	Description
RL	Reporting Limit
ND	Result not detected or below Reporting Limit
NT	Not a TNI Analyte
LCS	Laboratory Control Sample
LRB	Laboratory Reagent Blank (also referred to as Method Blank)
DUP	Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
RPD	Relative Percent Difference
MDL	Method Detection Limit
PQL	Practical Quantitation Limit
TDL	Target Detection Limit
SM	Standard Methods Compendium
Qualifier *	Description Generic data flag, applicable description added in the corresponding notes section The graphete was detected in the LRB at a level which is given from the plate to a secure and a result.
В	The analyte was detected in the LRB at a level which is significant relative to sample result

D	Reporting limit elevated due to dilution
Е	Estimated due to result exceeding the linear range of the analyzer
Н	The maximum recommended hold time was exceeded
[Dilution required due to matrix interference; reporting limit elevated
J	Estimated due to result found above MDL but below PQL (or RL)
K	Reporting limit raised due to matrix interference
M	The precision for duplicate analysis was not met; RPD outside acceptance criteria
N	Non-homogeneous sample made analysis questionable
PI	Possible interference may have affected the accuracy of the laboratory result
Q	Matrix Spike or Matrix Spike Duplicate recovery outside acceptance criteria
R	Result confirmed by new sample preparation and reanalysis
X	Other notation required; comment listed in sample notes and/or case narrative

Work Order Sample Summary

Customer Name: JH Campbell Complex

Work Order ID: Q4-2024 JHC Background Wells

Date Received: 10/16/2024 **Chemistry Project:** 24-0857

Sample #	Field Sample ID	<u>Matrix</u>	Sample Date	<u>Site</u>
24-0857-01	JHC-MW-15023	Groundwater	10/14/2024 17:06	JHC GW Monitoring - Background Wells
24-0857-02	JHC-MW-15024	Groundwater	10/14/2024 18:56	JHC GW Monitoring - Background Wells
24-0857-03	JHC-MW-15025	Groundwater	10/14/2024 20:11	JHC GW Monitoring - Background Wells
24-0857-04	JHC-MW-15026	Groundwater	10/15/2024 08:56	JHC GW Monitoring - Background Wells
24-0857-05	JHC-MW-15027	Groundwater	10/15/2024 10:31	JHC GW Monitoring - Background Wells
24-0857-06	JHC-MW-15028	Groundwater	10/15/2024 11:50	JHC GW Monitoring - Background Wells
24-0857-07	DUP-01	Groundwater	10/14/2024 00:00	JHC GW Monitoring - Background Wells
24-0857-08	FB-01	Water	10/15/2024 12:22	JHC GW Monitoring - Background Wells
24-0857-09	EB-01	Water	10/15/2024 12:10	JHC GW Monitoring - Background Wells
24-0857-10	JHC-MW-15025 Field MS	Groundwater	10/14/2024 20:11	JHC GW Monitoring - Background Wells
24-0857-11	JHC-MW-15025 Field MSD	Groundwater	10/14/2024 20:11	JHC GW Monitoring - Background Wells

10/31/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0857

 Field Sample ID:
 JHC-MW-15023
 Collect Date:
 10/14/2024

 Lab Sample ID:
 24-0857-01
 Collect Time:
 05:06 PM

Metals by EPA 6020B: CCR Rule App	endix III-IV T	otal Metals	з Ехр	Aliquot #: 24-0	857-01-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Arsenic	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Barium	24		ug/L	5.0	10/21/2024	AB24-1021-08
Beryllium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Boron	27		ug/L	20.0	10/21/2024	AB24-1021-08
Cadmium	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Calcium	12900		ug/L	1000.0	10/21/2024	AB24-1021-08
Chromium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Cobalt	ND		ug/L	6.0	10/21/2024	AB24-1021-08
Copper	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Iron	ND		ug/L	20.0	10/21/2024	AB24-1021-08
Lead	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Lithium	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Magnesium	4640		ug/L	1000.0	10/21/2024	AB24-1021-08
Molybdenum	ND		ug/L	5.0	10/21/2024	AB24-1021-08
Nickel	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Potassium	913		ug/L	100.0	10/21/2024	AB24-1021-08
Selenium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Silver	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Sodium	4480		ug/L	1000.0	10/21/2024	AB24-1021-08
Thallium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Vanadium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Zinc	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total, Aqueo	us			Aliquot #: 24-0	857-01-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/21/2024	AB24-1021-03
Anions by EPA 300.0 CCR Rule Analy	rte List, CI, F	⁻ , SO4, Aqւ	ieous	Aliquot #: 24-0	857-01-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	4570		ug/L	1000.0	10/17/2024	AB24-1017-01
Fluoride	ND		ug/L	1000.0	10/17/2024	AB24-1017-01
Sulfate	11300		ug/L	1000.0	10/17/2024	AB24-1017-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	857-01-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	84		mg/L	10.0	10/17/2024	AB24-1017-02
	_	04 0057 Daga	5 of 25			

Report Date: 10/31/24

Laboratory Services A CENTURY OF EXCELLENCE

24-0857-01

JHC GW Monitoring - Background Wells (395496) Sample Site: Laboratory Project: 24-0857

Collect Date: 10/14/2024 Collect Time: 05:06 PM

Lab Sample ID: Matrix: Groundwater

Field Sample ID: JHC-MW-15023

Alkalinity by SM 2320B		Aliquot #: 24-0	857-01-C04-A01	Analyst: DLS	
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	44000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Bicarbonate	44000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-07

10/31/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0857

 Field Sample ID:
 JHC-MW-15024
 Collect Date:
 10/14/2024

 Lab Sample ID:
 24-0857-02
 Collect Time:
 06:56 PM

Metals by EPA 6020B: CCR Rule Appe	endix III-IV To	tal Metals	s Exp	Aliquot #: 24-0	857-02-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Arsenic	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Barium	17		ug/L	5.0	10/21/2024	AB24-1021-08
Beryllium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Boron	ND		ug/L	20.0	10/21/2024	AB24-1021-08
Cadmium	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Calcium	28200		ug/L	1000.0	10/21/2024	AB24-1021-08
Chromium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Cobalt	ND		ug/L	6.0	10/21/2024	AB24-1021-08
Copper	2		ug/L	1.0	10/21/2024	AB24-1021-08
Iron	ND		ug/L	20.0	10/21/2024	AB24-1021-08
Lead	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Lithium	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Magnesium	8220		ug/L	1000.0	10/21/2024	AB24-1021-08
Molybdenum	ND		ug/L	5.0	10/21/2024	AB24-1021-08
Nickel	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Potassium	1190		ug/L	100.0	10/21/2024	AB24-1021-08
Selenium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Silver	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Sodium	23900		ug/L	1000.0	10/21/2024	AB24-1021-08
Thallium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Vanadium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Zinc	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total, Aqueou	ıs			Aliquot #: 24-0	857-02-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/21/2024	AB24-1021-03
Anions by EPA 300.0 CCR Rule Analys	te List, CI, F,	SO4, Aqu	ieous	Aliquot #: 24-0	857-02-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	26800		ug/L	1000.0	10/17/2024	AB24-1017-01
Fluoride	ND		ug/L	1000.0	10/17/2024	AB24-1017-01
Sulfate	8100		ug/L	1000.0	10/17/2024	AB24-1017-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	857-02-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	174		mg/L	10.0	10/17/2024	AB24-1017-02
	24.	-0857 Page	7 of 25			

Report Date: 10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0857

 Field Sample ID:
 JHC-MW-15024
 Collect Date:
 10/14/2024

 Lab Sample ID:
 24-0857-02
 Collect Time:
 06:56 PM

Alkalinity by SM 2320B			Aliquot #: 24-0	Analyst: DLS	
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	117000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Bicarbonate	117000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-07

10/31/24

Laboratory Services A CENTURY OF EXCELLENCE

JHC GW Monitoring - Background Wells (395496) Sample Site:

Laboratory Project: 24-0857 Collect Date: Field Sample ID: JHC-MW-15025 10/14/2024 Lab Sample ID: 24-0857-03 Collect Time: 08:11 PM

	ndix III-IV To			Aliquot #: 24-0	857-03-C01-A01	Analyst: EE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Arsenic	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Barium	10		ug/L	5.0	10/21/2024	AB24-1021-08
Beryllium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Boron	21		ug/L	20.0	10/21/2024	AB24-1021-08
Cadmium	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Calcium	37100		ug/L	1000.0	10/21/2024	AB24-1021-08
Chromium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Cobalt	ND		ug/L	6.0	10/21/2024	AB24-1021-08
Copper	1		ug/L	1.0	10/21/2024	AB24-1021-08
Iron	ND		ug/L	20.0	10/21/2024	AB24-1021-08
Lead	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Lithium	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Magnesium	11100		ug/L	1000.0	10/21/2024	AB24-1021-08
Molybdenum	ND		ug/L	5.0	10/21/2024	AB24-1021-08
Nickel	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Potassium	1460		ug/L	100.0	10/21/2024	AB24-1021-08
Selenium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Silver	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Sodium	26500		ug/L	1000.0	10/21/2024	AB24-1021-08
Thallium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Vanadium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Zinc	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total, Aqueous	5			Aliquot #: 24-0	857-03-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/21/2024	AB24-1021-03
Anions by EPA 300.0 CCR Rule Analyte	e List, CI, F,	SO4, Aqı	ieous	Aliquot #: 24-0	857-03-C02-A01	Analyst: KDF
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	43300		ug/L	1000.0	10/17/2024	AB24-1017-01
Fluoride	ND		ug/L	1000.0	10/17/2024	AB24-1017-01
Sulfate	12000		ug/L	1000.0	10/17/2024	AB24-1017-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	857-03-C03-A01	Analyst: LMC
	Result	Flag	Units	RL	Analysis Date	Tracking
Parameter(s)	Nesuit	ı ıag	Ullits	111	Allalysis Dale	Hacking

Report Date: 10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496)

Laboratory Project: **24-0857**Collect Date: 10/14/2024

Field Sample ID: JHC-MW-15025 Lab Sample ID: 24-0857-03

Collect Time: 08:11 PM

Alkalinity by SM 2320B			Aliquot #: 24-0	857-03-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	127000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Bicarbonate	127000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-07

10/31/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0857

 Field Sample ID:
 JHC-MW-15026
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0857-04
 Collect Time:
 08:56 AM

Metals by EPA 6020B: CCR Rule Appe	endix III-IV 1	Total Metals	s Ехр	Aliquot #: 24-0	857-04-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Arsenic	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Barium	9		ug/L	5.0	10/21/2024	AB24-1021-08
Beryllium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Boron	ND		ug/L	20.0	10/21/2024	AB24-1021-08
Cadmium	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Calcium	4280		ug/L	1000.0	10/21/2024	AB24-1021-08
Chromium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Cobalt	ND		ug/L	6.0	10/21/2024	AB24-1021-08
Copper	1		ug/L	1.0	10/21/2024	AB24-1021-08
Iron	28		ug/L	20.0	10/21/2024	AB24-1021-08
Lead	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Lithium	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Magnesium	1050		ug/L	1000.0	10/21/2024	AB24-1021-08
Molybdenum	ND		ug/L	5.0	10/21/2024	AB24-1021-08
Nickel	4		ug/L	2.0	10/21/2024	AB24-1021-08
Potassium	557		ug/L	100.0	10/21/2024	AB24-1021-08
Selenium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Silver	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Sodium	2200		ug/L	1000.0	10/21/2024	AB24-1021-08
Thallium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Vanadium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Zinc	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total, Aqueou	ıs			Aliquot #: 24-0	857-04-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/21/2024	AB24-1021-03
Anions by EPA 300.0 CCR Rule Analy	te List, Cl, I	F, SO4, Aqı	ieous	Aliquot #: 24-0	857-04-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	3070		ug/L	1000.0	10/17/2024	AB24-1017-01
Fluoride	ND		ug/L	1000.0	10/17/2024	AB24-1017-01
Sulfate	7240		ug/L	1000.0	10/17/2024	AB24-1017-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	857-04-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	27		mg/L	10.0	10/17/2024	AB24-1017-02
	2	4 0957 Dogo 1	1 of 25			

Report Date: 10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0857

 Field Sample ID:
 JHC-MW-15026
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0857-04
 Collect Time:
 08:56 AM

Alkalinity by SM 2320B			Aliquot #: 24-0	857-04-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	10600	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Bicarbonate	10600	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-07

10/31/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0857

 Field Sample ID:
 JHC-MW-15027
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0857-05
 Collect Time:
 10:31 AM

		tal Metals		Aliquot #: 24-0	857-05-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Arsenic	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Barium	8		ug/L	5.0	10/21/2024	AB24-1021-08
Beryllium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Boron	22		ug/L	20.0	10/21/2024	AB24-1021-08
Cadmium	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Calcium	18700		ug/L	1000.0	10/21/2024	AB24-1021-08
Chromium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Cobalt	ND		ug/L	6.0	10/21/2024	AB24-1021-08
Copper	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Iron	31		ug/L	20.0	10/21/2024	AB24-1021-08
Lead	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Lithium	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Magnesium	4800		ug/L	1000.0	10/21/2024	AB24-1021-08
Molybdenum	ND		ug/L	5.0	10/21/2024	AB24-1021-08
Nickel	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Potassium	478		ug/L	100.0	10/21/2024	AB24-1021-08
Selenium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Silver	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Sodium	2070		ug/L	1000.0	10/21/2024	AB24-1021-08
Thallium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Vanadium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Zinc	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total, Aqueous	5			Aliquot #: 24-0	857-05-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/21/2024	AB24-1021-03
Anions by EPA 300.0 CCR Rule Analyte	e List, CI, F,	SO4, Aqı	ieous	Aliquot #: 24-0	857-05-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	1270		ug/L	1000.0	10/17/2024	AB24-1017-01
Fluoride	ND		ug/L	1000.0	10/17/2024	AB24-1017-01
Sulfate	4790		ug/L	1000.0	10/17/2024	AB24-1017-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	857-05-C03-A01	Analyst: LMC
	- I	Floor	l linita	RL	Analysis Data	Tue elsine
Parameter(s)	Result	Flag	Units	KL	Analysis Date	Tracking

Report Date: 10/31/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0857

 Field Sample ID:
 JHC-MW-15027
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0857-05
 Collect Time:
 10:31 AM

Alkalinity by SM 2320B			Aliquot #: 24-0	857-05-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	62200	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Bicarbonate	62200	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-07

10/31/24

Laboratory Services A CENTURY OF EXCELLENCE

JHC GW Monitoring - Background Wells (395496) Sample Site:

Laboratory Project: 24-0857 Collect Date: Field Sample ID: JHC-MW-15028 10/15/2024 Lab Sample ID: 24-0857-06 Collect Time: 11:50 AM

Metals by EPA 6020B: CCR Rule Appe	ndix III-IV 1	Total Metals	s Ехр	Aliquot #: 24-0	857-06-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Arsenic	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Barium	6		ug/L	5.0	10/21/2024	AB24-1021-08
Beryllium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Boron	ND		ug/L	20.0	10/21/2024	AB24-1021-08
Cadmium	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Calcium	15000		ug/L	1000.0	10/21/2024	AB24-1021-08
Chromium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Cobalt	ND		ug/L	6.0	10/21/2024	AB24-1021-08
Copper	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Iron	25		ug/L	20.0	10/21/2024	AB24-1021-08
Lead	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Lithium	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Magnesium	3480		ug/L	1000.0	10/21/2024	AB24-1021-08
Molybdenum	ND		ug/L	5.0	10/21/2024	AB24-1021-08
Nickel	4		ug/L	2.0	10/21/2024	AB24-1021-08
Potassium	389		ug/L	100.0	10/21/2024	AB24-1021-08
Selenium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Silver	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Sodium	1120		ug/L	1000.0	10/21/2024	AB24-1021-08
Thallium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Vanadium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Zinc	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total, Aqueou	s			Aliquot #: 24-0	857-06-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/21/2024	AB24-1021-03
Anions by EPA 300.0 CCR Rule Analyt	e List, CI, F	F, SO4, Aqı	ieous	Aliquot #: 24-0	857-06-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	ND		ug/L	1000.0	10/17/2024	AB24-1017-01
Fluoride	ND		ug/L	1000.0	10/17/2024	AB24-1017-01
Sulfate	5230		ug/L	1000.0	10/17/2024	AB24-1017-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	857-06-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	62		mg/L	10.0	10/17/2024	AB24-1017-02
	2	4 0957 Dogo 1	5 of 25			

Report Date: 10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0857

 Field Sample ID:
 JHC-MW-15028
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0857-06
 Collect Time:
 11:50 AM

Alkalinity by SM 2320B			Aliquot #: 24-0	857-06-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	50000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Bicarbonate	50000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-07

10/31/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0857

 Field Sample ID:
 DUP-01
 Collect Date:
 10/14/2024

 Lab Sample ID:
 24-0857-07
 Collect Time:
 12:00 AM

		tal Metals	•	Aliquot #: 24-0	037-07-CUI-AUI	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Arsenic	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Barium	21		ug/L	5.0	10/21/2024	AB24-1021-08
Beryllium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Boron	30		ug/L	20.0	10/21/2024	AB24-1021-08
Cadmium	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Calcium	13600		ug/L	1000.0	10/21/2024	AB24-1021-08
Chromium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Cobalt	ND		ug/L	6.0	10/21/2024	AB24-1021-08
Copper	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Iron	ND		ug/L	20.0	10/21/2024	AB24-1021-08
Lead	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Lithium	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Magnesium	4840		ug/L	1000.0	10/21/2024	AB24-1021-08
Molybdenum	ND		ug/L	5.0	10/21/2024	AB24-1021-08
Nickel	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Potassium	988		ug/L	100.0	10/21/2024	AB24-1021-08
Selenium	1		ug/L	1.0	10/21/2024	AB24-1021-08
Silver	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Sodium	4590		ug/L	1000.0	10/21/2024	AB24-1021-08
Thallium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Vanadium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Zinc	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total, Aqueous	S			Aliquot #: 24-0	857-07-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/21/2024	AB24-1021-03
Anions by EPA 300.0 CCR Rule Analyte	e List, CI, F,	SO4, Aqı	ieous	Aliquot #: 24-0	857-07-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	4500		ug/L	1000.0	10/17/2024	AB24-1017-01
Fluoride	ND		ug/L	1000.0	10/17/2024	AB24-1017-01
Sulfate	11000		ug/L	1000.0	10/17/2024	AB24-1017-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	857-07-C03-A01	Analyst: LMC
	Dooult	Flag	Units	RL	Analysis Date	Tracking
Parameter(s)	Result	riay	Units	IXL.	Allalysis Date	Hacking

Report Date: 10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0857

 Field Sample ID:
 DUP-01
 Collect Date:
 10/14/2024

 Lab Sample ID:
 24-0857-07
 Collect Time:
 12:00 AM

Alkalinity by SM 2320B			Aliquot #: 24-0	857-07-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	44000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Bicarbonate	44000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-07

10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0857

 Field Sample ID:
 FB-01
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0857-08
 Collect Time:
 12:22 PM

Matrix: Water

Metals by EPA 6020B: CCR Rule Appe	ndix III-IV To	tal Metals	s Exp	Aliquot #: 24-0	857-08-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Arsenic	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Barium	ND		ug/L	5.0	10/21/2024	AB24-1021-08
Beryllium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Boron	ND		ug/L	20.0	10/21/2024	AB24-1021-08
Cadmium	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Calcium	ND		ug/L	1000.0	10/21/2024	AB24-1021-08
Chromium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Cobalt	ND		ug/L	6.0	10/21/2024	AB24-1021-08
Copper	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Iron	ND		ug/L	20.0	10/21/2024	AB24-1021-08
Lead	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Lithium	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Magnesium	ND		ug/L	1000.0	10/21/2024	AB24-1021-08
Molybdenum	ND		ug/L	5.0	10/21/2024	AB24-1021-08
Nickel	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Potassium	ND		ug/L	100.0	10/21/2024	AB24-1021-08
Selenium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Silver	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Sodium	ND		ug/L	1000.0	10/21/2024	AB24-1021-08
Thallium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Vanadium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Zinc	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total, Aqueou	S			Aliquot #: 24-0	857-08-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/21/2024	AB24-1021-03
Anions by EPA 300.0 CCR Rule Analyt	e List, CI, F,	SO4, Aqu	ieous	Aliquot #: 24-0	857-08-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	ND		ug/L	1000.0	10/17/2024	AB24-1017-01
Fluoride	ND		ug/L	1000.0	10/17/2024	AB24-1017-01
Sulfate	ND		ug/L	1000.0	10/17/2024	AB24-1017-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	857-08-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	ND	_	mg/L	10.0	10/17/2024	AB24-1017-02
		0857 Page 1				

10/31/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0857

 Field Sample ID:
 EB-01
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0857-09
 Collect Time:
 12:10 PM

Matrix: Water

Metals by EPA 6020B: CCR Rule App	endix III-IV To	tal Metals	s Ехр	Aliquot #: 24-0	857-09-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Arsenic	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Barium	ND		ug/L	5.0	10/21/2024	AB24-1021-08
Beryllium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Boron	ND		ug/L	20.0	10/21/2024	AB24-1021-08
Cadmium	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Calcium	ND		ug/L	1000.0	10/21/2024	AB24-1021-08
Chromium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Cobalt	ND		ug/L	6.0	10/21/2024	AB24-1021-08
Copper	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Iron	ND		ug/L	20.0	10/21/2024	AB24-1021-08
Lead	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Lithium	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Magnesium	ND		ug/L	1000.0	10/21/2024	AB24-1021-08
Molybdenum	ND		ug/L	5.0	10/21/2024	AB24-1021-08
Nickel	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Potassium	ND		ug/L	100.0	10/21/2024	AB24-1021-08
Selenium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Silver	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Sodium	ND		ug/L	1000.0	10/21/2024	AB24-1021-08
Thallium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Vanadium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Zinc	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total, Aqueo	us			Aliquot #: 24-0	857-09-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/21/2024	AB24-1021-03
Anions by EPA 300.0 CCR Rule Analy	rte List, CI, F,	SO4, Aqı	ieous	Aliquot #: 24-0	857-09-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	ND		ug/L	1000.0	10/17/2024	AB24-1017-01
Fluoride	ND		ug/L	1000.0	10/17/2024	AB24-1017-01
Sulfate	ND		ug/L	1000.0	10/17/2024	AB24-1017-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	857-09-C03-A01	Analyst: LMC
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	ND		mg/L	10.0	10/17/2024	AB24-1017-02
	24-	0857 Page 2	20 of 25			

Collect Time:

10/31/24

08:11 PM

Laboratory Services A CENTURY OF EXCELLENCE

JHC GW Monitoring - Background Wells (395496) Sample Site: Laboratory Project: 24-0857

Lab Sample ID: 24-0857-10 Matrix: Groundwater

Fluoride

Sulfate

Field Sample ID: JHC-MW-15025 Field MS Collect Date: 10/14/2024

Metals by EPA 6020B: CCR Rule Appendix III-IV Total Metals Exp Aliquot #: 24-0857-10-C01-A01 Analyst: EB **Units** Parameter(s) Result Flag RL **Analysis Date Tracking** % Antimony 107 1.0 10/21/2024 AB24-1021-08 % Arsenic 109 1.0 10/21/2024 AB24-1021-08 **Barium** 104 % 5.0 10/21/2024 AB24-1021-08 Beryllium % 101 1.0 10/21/2024 AB24-1021-08 **Boron** 107 % 20.0 10/21/2024 AB24-1021-08 Cadmium 107 % 0.2 10/21/2024 AB24-1021-08 Calcium 104 % 1000.0 10/21/2024 AB24-1021-08 % Chromium 109 10/21/2024 AB24-1021-08 1.0 % Cobalt 110 6.0 10/21/2024 AB24-1021-08 Copper 110 % 1.0 10/21/2024 AB24-1021-08 % Iron 108 20.0 10/21/2024 AB24-1021-08 Lead 103 % 1.0 10/21/2024 AB24-1021-08 Lithium 100 % 10.0 10/21/2024 AB24-1021-08 % Magnesium 111 1000.0 10/21/2024 AB24-1021-08 Molybdenum 108 % 5.0 10/21/2024 AB24-1021-08 Nickel 112 % 10/21/2024 AB24-1021-08 2.0 Potassium 105 % 100.0 10/21/2024 AB24-1021-08 107 % Selenium 1.0 10/21/2024 AB24-1021-08 Silver 99.0 % 0.2 10/21/2024 AB24-1021-08 Sodium 107 % 1000.0 10/21/2024 AB24-1021-08 2.0 **Thallium** 105 % 10/21/2024 AB24-1021-08 Vanadium % 2.0 10/21/2024 AB24-1021-08 113 Zinc 114 % 10.0 10/21/2024 AB24-1021-08 Mercury by EPA 7470A, Total, Aqueous Aliquot #: 24-0857-10-C01-A02 **Analyst: CLE** Result Flag Units RL Parameter(s) **Analysis Date** Tracking Mercury 91.0 % 0.2 10/21/2024 AB24-1021-03 Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous Aliquot #: 24-0857-10-C02-A01 Analyst: KDR Parameter(s) Result Flag Units RL **Analysis Date Tracking** Chloride 114 % 10/17/2024 AB24-1017-01 1000.0

%

%

1000.0

1000.0

10/17/2024

10/17/2024

AB24-1017-01

AB24-1017-01

99

100

10/31/24

Laboratory Services A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Background Wells (395496) Laboratory Project: 24-0857

Field Sample ID: JHC-MW-15025 Field MSD

Lab Sample ID: Matrix: Groundwater

Collect Date: 10/14/2024 24-0857-11 Collect Time: 08:11 PM

Metals by EPA 6020B: CCR Ru	ule Appendix III-IV To	tal Metals Exp	Aliquot #: 24-0)857-11-C01-A01	Analyst: EB
Parameter(s)	Result	Flag Unit	ts RL	Analysis Date	Tracking
Antimony	106	%	1.0	10/21/2024	AB24-1021-08
Arsenic	106	%	1.0	10/21/2024	AB24-1021-08
Barium	106	%	5.0	10/21/2024	AB24-1021-08
Beryllium	103	%	1.0	10/21/2024	AB24-1021-08
Boron	101	%	20.0	10/21/2024	AB24-1021-08
Cadmium	108	%	0.2	10/21/2024	AB24-1021-08
Calcium	105	%	1000.0	10/21/2024	AB24-1021-08
Chromium	108	%	1.0	10/21/2024	AB24-1021-08
Cobalt	108	%	6.0	10/21/2024	AB24-1021-08
Copper	107	%	1.0	10/21/2024	AB24-1021-08
Iron	106	%	20.0	10/21/2024	AB24-1021-08
Lead	104	%	1.0	10/21/2024	AB24-1021-08
Lithium	102	%	10.0	10/21/2024	AB24-1021-08
Magnesium	101	%	1000.0	10/21/2024	AB24-1021-08
Molybdenum	110	%	5.0	10/21/2024	AB24-1021-08
Nickel	108	%	2.0	10/21/2024	AB24-1021-08
Potassium	103	%	100.0	10/21/2024	AB24-1021-08
Selenium	107	%	1.0	10/21/2024	AB24-1021-08
Silver	102	%	0.2	10/21/2024	AB24-1021-08
Sodium	107	%	1000.0	10/21/2024	AB24-1021-08
Thallium	106	%	2.0	10/21/2024	AB24-1021-08
Vanadium	109	%	2.0	10/21/2024	AB24-1021-08
Zinc	110	%	10.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total,	Aqueous		Aliquot #: 24-0)857-11-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag Unit	ts RL	Analysis Date	Tracking
Mercury	96.0	%	0.2	10/21/2024	AB24-1021-03
Anions by EPA 300.0 CCR Rul	le Analyte List, Cl, F,	SO4, Aqueous	Aliquot #: 24-0)857-11-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag Unit	•	Analysis Date	Tracking
Chloride	113	%	1000.0	10/17/2024	AB24-1017-01
Fluoride	100	%	1000.0	10/17/2024	AB24-1017-01
Sulfate	101	%	1000.0	10/17/2024	AB24-1017-01

Report Date: 10/31/24

Data Qualifiers	Exception Summary
	No exceptions occurred.

CONSUMERS ENERGY

Chemistry Department

General Standard Operating Procedure

PROC CHEM-1.2.01 PAGE 1 OF 2 **REVISION 5** ATTACHMENT A

TITLE: S.	SAMPLE I	LOG-IN –	SHIPMENT	INSPEC	CTION FORM
-----------	----------	----------	----------	--------	------------

			on Date: 10.16.24		
ample Origin/Project Name:	JHC C	34-2024	background We	eus	
Shipment Delivered By: Ente	r the type of	shipment carr	rier.		
= :			UPS		
			Other/Carry In (whom	LMO	
Shipping Containers: Enter the					
Cooler	Cardboard B	ox		_	
Loose/Unpackaged Co	ontainers	*	Other	,	
Condition of Shipment: Enter	r the as-rece	ived condition	of the shipment container.		
Damaged Shipment O Other			Dented		king
Shipment Security: Enter if a	ny of the sh	ipping contain	ers were opened before rece	ipt.	
Shipping Containers R	Received: O	pened	Sealed 🗸	_ N/A	
Enclosed Documents: Enter the	he type of d	ocuments encl	osed with the shipment.		
CoC _ V Wo	rk Request _		Air Data Sheet	Other	
Femperature of Containers: 1	Measure the	temperature o	f several sample containers.		
_		-	°C Samples Receive	ed on Ice: Yes	/ No
M&TE # and Expiration					
		the type and to	otal number of sample contai	ners received.	
Number and Type of Contain	iers: Enter				
Container Type	Water	Soil .	Other	<u>Broken</u>	Leaking
Container Type VOA (40mL or 60mL)	Water		Other	Broken	<u>Leaking</u>
Container Type VOA (40mL or 60mL) Quart/Liter (g / p)	Water (4			<u>Broken</u>	<u>Leaking</u>
Container Type VOA (40mL or 60mL) Quart/Liter (g/p) 9-oz (amber glass jar)	Water (4			Broken ————	Leakins
Container Type VOA (40mL or 60mL) Quart/Liter (g/p) 9-oz (amber glass jar) 2-oz (amber glass)	Water (4			<u>Broken</u>	<u>Leaking</u>
Container Type VOA (40mL or 60mL) Quart/Liter (g/p) 9-oz (amber glass jar) 2-oz (amber glass) 125 mL (plastic)	Water (4			<u>Broken</u>	<u>Leaking</u>
Container Type VOA (40mL or 60mL) Quart/Liter (g/p) 9-oz (amber glass jar) 2-oz (amber glass) 125 mL (plastic) 24 mL vial (glass)	Water (4			Broken	Leaking
Container Type VOA (40mL or 60mL) Quart/Liter (g/p) 9-oz (amber glass jar) 2-oz (amber glass) 125 mL (plastic)	Water (4			<u>Broken</u>	Leaking

CHAIN OF CUSTODY

CONSUMERS ENERGY COMPANY – LABORATORY SERVICES

135 WEST TRAIL ST., JACKSON, MI 49201 • (517) 788-1251

of	
	of

SAMPLING SITE / CUSTOMER: PROJECT		PROJECT NUMBER:	SAF CC 01 WO#.					ANALYSIS REQUESTED							QA REQUIREMENT:				
JHC Q4-2024 Back	ground Wells			24-0857 REQUESTER: Bethany Swanberg				(Attach List if More Space is Needed)						QA REQUIREMENT:					
SAMPLING TEAM:	rmo			TURNAROUND TIME REQUIRED:														□ NPDES	
					□ 24 HR □ 48 HR □ 3 DAYS □ STANDARD ☒ OTHER				===								⊠ TNI		
SEND REPORT TO:	Joseph Firlit			email: MATRIX CODES:	phone:											☐ ISO 17025			
COPY TO:	JR Register			GW = Groundwater OX = Other WW = Wastewater SL = Slud	r	CONTAINERS													☐ 10 CFR 50 APP. B
	TRC			W = Wastewater SL = Study W = Water / Aqueous Liquid A = Air S = Soil / General Solid WP = Wig		#		PRESERVATIVE			VE	Metals			ty	226	228		☐ INTERNAL INFO
LAB	SAMPLE COLL	ECTION	MATRIX		neral Waste	TOTAL	0	None HNO ₃ H ₂ SO ₄			H L	al M	Anions	S	Alkalinity	Radium 2	Radium		□ OTHER
SAMPLE ID	DATE	TIME	MAT	FIELD SAMPLE ID / LO	CATION	TO	Non			HCI MeC Othe		Total	Ani	TDS	Alk	Rad	Rad		REMARKS
24-0857-01	10.14.24	1704	GW	JHC-MW-15023		7	4	3				x	x	x	x	x	x		
-02	10.14.24	1854	GW	JHC-MW-15024		7	4	3				x	x	x	x	x	x		
-03	10.14.24	2011	GW	JHC-MW-15025		7	4	3				х	x	x	x	x	x		
-04	10.15.24	0856	GW	JHC-MW-15026		7	4	3				x	x	x	x	x	x		
-05	10.15.24	1031	GW	JHC-MW-15027		7	4	3				x	x	х	x	x	x		
-06	10.15.24	1150	GW	JHC-MW-15028		7	4	3				x	x	x	x	x	x		
-07	10.14.24	_	GW	DUP-01		7	4	3				x	x	x	x	x	x		
-08	10.15.24	1222	W	FB-01		5	2	3				x	x	x		x	x		
-09	10.15.24	1210	W	EB-01		5	2	3				x	x	x		x	x		
-10	16.14.24	2011	GW	JHC-MW-15025 MS		2	1	1				x	x						
-11	10.14.24	2011	GW	JHC-MW-15025 MSD		2	1	1				x	x						
RELINQUISHED BY:	Stopsa		DATE/	,	RECEIVED BY:							CC	MME	ENTS					
RELINQUISHED BY:			DATE/	TIME: I	RECEIVED BY:	0.5											_ °C		#: L\$627723 ue Date: 6-27:25

135 W. Trail St. Jackson, MI 49201 phone 517-788-1251 fax 517-788-2533

To: JJFirlit, JH Campbell Complex

From: EBlaj, T-258

Date: October 31, 2024

Subject: JH CAMPBELL SOLID WASTE DISPOSAL AREA - GROUNDWATER MONITORING

4th Quarter, 2024 – Pond A Wells

CC: HDRegister, P22-521 Sarah Holmstrom, Project Manager

ADSantini, P20-215B-REM TRC Companies, Inc. 1540 Eisenhower Plac

1540 Eisenhower Place Ann Arbor, MI 48108

Chemistry Project: 24-0858

CE Laboratory Services conducted groundwater monitoring at the JH Campbell Solid Waste Disposal Area during the week of 10/14/2024, for the 4th Quarter requirement, as specified in the Hydrogeological Monitoring Plan for the site. The samples were received for analysis by the Chemistry department on 10/16/2024.

Samples for Radium analysis have been subcontracted to Eurofins/TestAmerica, Inc. and their results are being reported separately. Please note that the subcontracted work is not reported under the CE laboratory scope of accreditation.

The report that follows presents the results of the requested analytical testing; the results apply only to the samples, as received. All samples have been analyzed in accordance with the 2016 TNI Standard and the applicable A2LA accreditation scope for Laboratory Services. Any exceptions to applicable test method criteria and standard compliance are noted in the Case Narrative or flagged with applicable qualifiers in the analytical results section.

Reviewed and approved by:

Emil Blaj Sr. Technical Analyst Project Lead

Testing performed in accordance with the A2LA scope of accredidation specified in the listed certificate.

The information contained in this report is the sole property of Consumers Energy. It cannot be reproduced except in full, and with consent from Consumers Energy, or the customer for which this report was issued.

CASE NARRATIVE

I. Sample Receipt

All samples were received within hold time and in good conditions; no anomalies were noted on the Sample Log-In Shipment Inspection Form during sample check-in. Identification of all samples included in the work order/project is provided in the sample summary section. Sample preservation upon receipt was verified by the sample custodian and confirmed to meet method requirements.

II. Methodology

Unless otherwise indicated, sample preparation and analysis was performed in accordance with the corresponding test methods from "Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100); SW-846, "Test Methods for Evaluating Solid Waste – Physical/Chemical Methods", USEPA (latest revisions), and Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 22nd Edition, 2012.

III. Results/Quality Control

Analytical results for this report are presented by laboratory sample ID, container & aliquot number. Results for the field blanks, field duplicates, and percent recoveries of the field matrix spike & matrix spike duplicate samples are included in the results section. Unless specifically noted in the case narrative, all method quality control requirements have been met. If any results are qualified, the corresponding data flags/qualifiers are listed on the last page of the results section. Any additional information on method performance, when applicable, is presented in this section of the case narrative. When data flags are not needed, the qualifiers text box on the last page is left blank, and a statement confirms that no exceptions occurred.

DEFINITIONS / QUALIFIERS

The following qualifiers and/or acronyms are used in the report where applicable:

Acronym	Description
RL	Reporting Limit
ND	Result not detected or below Reporting Limit
NT	Not a TNI Analyte
LCS	Laboratory Control Sample
LRB	Laboratory Reagent Blank (also referred to as Method Blank)
DUP	Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
RPD	Relative Percent Difference
MDL	Method Detection Limit
PQL	Practical Quantitation Limit
TDL	Target Detection Limit
SM	Standard Methods Compendium
Qualifier *	Description
	Generic data flag, applicable description added in the corresponding notes section
В	The analyte was detected in the LRB at a level which is significant relative to sample result

D	Reporting limit elevated due to dilution
E	Estimated due to result exceeding the linear range of the analyzer
H	The maximum recommended hold time was exceeded
I	Dilution required due to matrix interference; reporting limit elevated
J	Estimated due to result found above MDL but below PQL (or RL)
K	Reporting limit raised due to matrix interference
M	The precision for duplicate analysis was not met; RPD outside acceptance criteria
N	Non-homogeneous sample made analysis questionable
PI	Possible interference may have affected the accuracy of the laboratory result
Q	Matrix Spike or Matrix Spike Duplicate recovery outside acceptance criteria
R	Result confirmed by new sample preparation and reanalysis
X	Other notation required; comment listed in sample notes and/or case narrative

Work Order Sample Summary

Customer Name: JH Campbell Complex **Work Order ID:** Q4-2024 Pond A Wells

Date Received: 10/16/2024 **Chemistry Project:** 24-0858

Sample #	Field Sample ID	<u>Matrix</u>	Sample Date	<u>Site</u>
24-0858-01	JHC-MW-15006	Groundwater	10/14/2024 18:51	JHC GW Monitoring - Pond A Wells
24-0858-02	JHC-MW-15007R	Groundwater	10/14/2024 17:56	JHC GW Monitoring - Pond A Wells
24-0858-03	JHC-MW-15008R	Groundwater	10/14/2024 15:41	JHC GW Monitoring - Pond A Wells
24-0858-04	JHC-MW-15009R	Groundwater	10/14/2024 14:16	JHC GW Monitoring - Pond A Wells
24-0858-05	JHC-MW-15011R	Groundwater	10/14/2024 19:41	JHC GW Monitoring - Pond A Wells
24-0858-06	DUP-02	Groundwater	10/14/2024 00:00	JHC GW Monitoring - Pond A Wells
24-0858-07	FB-02	Water	10/14/2024 19:08	JHC GW Monitoring - Pond A Wells
24-0858-08	EB-02	Water	10/14/2024 20:01	JHC GW Monitoring - Pond A Wells
24-0858-09	JHC-MW-15007R MS	Groundwater	10/14/2024 17:56	JHC GW Monitoring - Pond A Wells
24-0858-10	JHC-MW-15007R MSD	Groundwater	10/14/2024 17:56	JHC GW Monitoring - Pond A Wells

10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0858

 Field Sample ID:
 JHC-MW-15006
 Collect Date:
 10/14/2024

 Lab Sample ID:
 24-0858-01
 Collect Time:
 06:51 PM

Parameter(s) Result Flag Units RL Analysis Date Tracking Antienny ND ug/L 1.0 10/21/2024 AB24-1021-08 Arsenic 11 ug/L 1.0 10/21/2024 AB24-1021-08 Barlum 103 ug/L 5.0 10/21/2024 AB24-1021-08 Beryllium ND ug/L 2.0 10/21/2024 AB24-1021-08 Boron 695 ug/L 2.0 10/21/2024 AB24-1021-08 Cadrium ND ug/L 1.0 10/21/2024 AB24-1021-08 Colacium 52800 ug/L 1.0 10/21/2024 AB24-1021-08 Corbalt ND ug/L 1.0 10/21/2024 AB24-1021-08 Copper ND ug/L 1.0 10/21/2024 AB24-1021-08 Lead ND ug/L 1.0 10/21/2024 AB24-1021-08 Lead ND ug/L 1.0 10/21/2024 AB24-1021-08 Malea	Metals by EPA 6020B: CCR Rul	e Appendix III-IV To	tal Metals	s Ехр	Aliquot #: 24-0	858-01-C01-A01	Analyst: EB
Arsenic 11 ug/L 1.0 10/21/2024 AB24-1021-08 Barlum 103 ug/L 5.0 10/21/2024 AB24-1021-08 Berylllum ND ug/L 1.0 10/21/2024 AB24-1021-08 Boron 695 ug/L 20.0 10/21/2024 AB24-1021-08 Cadmium ND ug/L 0.2 10/21/2024 AB24-1021-08 Calcium 52800 ug/L 1000.0 10/21/2024 AB24-1021-08 Chromium ND ug/L 1.0 10/21/2024 AB24-1021-08 Chromium ND ug/L 1.0 10/21/2024 AB24-1021-08 Cobalt ND ug/L 1.0 10/21/2024 AB24-1021-08 Copper ND ug/L 1.0 10/21/2024 AB24-1021-08 Iron ND ug/L 1.0 10/21/2024 AB24-1021-08 Iron ND ug/L 1.0 10/21/2024 AB24-1021-08 Lead ND ug/L 1.0 10/21/2024 AB24-1021-08 Lithium 13 ug/L 1.0 10/21/2024 AB24-1021-08 Magnesium 27800 ug/L 1.0 10/21/2024 AB24-1021-08 Molybdenum 30 ug/L 10.0 10/21/2024 AB24-1021-08 Nickel 2 ug/L 1000 10/21/2024 AB24-1021-08 Nickel 2 ug/L 1000 10/21/2024 AB24-1021-08 Selenium 5280 ug/L 1000 10/21/2024 AB24-1021-08 Selenium 5280 ug/L 1000 10/21/2024 AB24-1021-08 Selenium 50 ug/L 1000 10/21/2024 AB24-1021-08 Silver ND ug/L 1000 10/21/2024 AB24-1021-08 Silver ND ug/L 1000 10/21/2024 AB24-1021-08 Sodium 15200 ug/L 1000 10/21/2024 AB24-1021-08 Thallium ND ug/L 2.0 10/21/2024 AB24-1021-08 Thalliu	Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Barium 103 ug/L 5.0 10/21/2024 AB24-1021-08 Beryllium ND ug/L 1.0 10/21/2024 AB24-1021-08 Boron 695 ug/L 2.0 10/21/2024 AB24-1021-08 Cadmium ND ug/L 1.00 10/21/2024 AB24-1021-08 Calcium 52800 ug/L 1.00 10/21/2024 AB24-1021-08 Chromium ND ug/L 1.0 10/21/2024 AB24-1021-08 Cobalt ND ug/L 1.0 10/21/2024 AB24-1021-08 Copper ND ug/L 1.0 10/21/2024 AB24-1021-08 Iron ND ug/L 1.0 10/21/2024 AB24-1021-08 Lead ND ug/L 1.0 10/21/2024 AB24-1021-08 Lithium 13 ug/L 1.0 10/21/2024 AB24-1021-08 Magnesium 27800 ug/L 1.0 10/21/2024 AB24-1021-08 Nickel 2	Antimony	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Beryllium ND ug/L 1.0 10/21/2024 AB24-1021-08 Boron 695 ug/L 20.0 10/21/2024 AB24-1021-08 Cadnium ND ug/L 0.2 10/21/2024 AB24-1021-08 Calcium 52800 ug/L 1000.0 10/21/2024 AB24-1021-08 Chomium ND ug/L 6.0 10/21/2024 AB24-1021-08 Cobalt ND ug/L 6.0 10/21/2024 AB24-1021-08 Copper ND ug/L 1.0 10/21/2024 AB24-1021-08 Iron ND ug/L 1.0 10/21/2024 AB24-1021-08 Lead ND ug/L 1.0 10/21/2024 AB24-1021-08 Magnesium 27800 ug/L 10.0 10/21/2024 AB24-1021-08 Molybdenum 30 ug/L 5.0 10/21/2024 AB24-1021-08 Molybdenum 30 ug/L 2.0 10/21/2024 AB24-1021-08 Selenium 5 <td>Arsenic</td> <td>11</td> <td></td> <td>ug/L</td> <td>1.0</td> <td>10/21/2024</td> <td>AB24-1021-08</td>	Arsenic	11		ug/L	1.0	10/21/2024	AB24-1021-08
Boron 695 ug/L 20.0 10/21/2024 AB24-1021-08 Cadmium ND ug/L 0.2 10/21/2024 AB24-1021-08 Calcium 52800 ug/L 1000.0 10/21/2024 AB24-1021-08 Chromium ND ug/L 1.0 10/21/2024 AB24-1021-08 Cobalt ND ug/L 6.0 10/21/2024 AB24-1021-08 Copper ND ug/L 1.0 10/21/2024 AB24-1021-08 Iron ND ug/L 2.0 10/21/2024 AB24-1021-08 Iron ND ug/L 1.0 10/21/2024 AB24-1021-08 Lead ND ug/L 5.0 10/21/2024 AB24-1021-08 Mollybeaum 30 ug/L <td>Barium</td> <td>103</td> <td></td> <td>ug/L</td> <td>5.0</td> <td>10/21/2024</td> <td>AB24-1021-08</td>	Barium	103		ug/L	5.0	10/21/2024	AB24-1021-08
Cadmium ND ug/L 0,2 10/21/2024 AB24-1021-08 Calcium 52800 ug/L 1000.0 10/21/2024 AB24-1021-08 Chromium ND ug/L 1,0 10/21/2024 AB24-1021-08 Cobalt ND ug/L 6,0 10/21/2024 AB24-1021-08 Copper ND ug/L 1,0 10/21/2024 AB24-1021-08 Iron ND ug/L 1,0 10/21/2024 AB24-1021-08 Lead ND ug/L 1,0 10/21/2024 AB24-1021-08 Lithium 13 ug/L 1,0 10/21/2024 AB24-1021-08 Magnesium 27800 ug/L 1,0 10/21/2024 AB24-1021-08 Molybdenum 30 ug/L 1,0 10/21/2024 AB24-1021-08 Mickel 2 ug/L 1,0 10/21/2024 AB24-1021-08 Selenium 5 ug/L 1,0 10/21/2024 AB24-1021-08 Silver ND	Beryllium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Calcium 52800 ug/L 1000.0 10/21/2024 AB24-1021-08 Chromium ND ug/L 1.0 10/21/2024 AB24-1021-08 Cobalt ND ug/L 6.0 10/21/2024 AB24-1021-08 Copper ND ug/L 1.0 10/21/2024 AB24-1021-08 Iron ND ug/L 1.0 10/21/2024 AB24-1021-08 Lead ND ug/L 1.0 10/21/2024 AB24-1021-08 Lithium 13 ug/L 1.00 10/21/2024 AB24-1021-08 Magnesium 2780 ug/L 1.00 10/21/2024 AB24-1021-08 Magnesium 30 ug/L 1.00 10/21/2024 AB24-1021-08 Mickel 2 ug/L 1.0 10/21/2024 AB24-1021-08 Nickel 2 ug/L 1.0 10/21/2024 AB24-1021-08 Selenium 5 ug/L 1.0 10/21/2024 AB24-1021-08 Sodium 15200	Boron	695		ug/L	20.0	10/21/2024	AB24-1021-08
Chromium ND ug/L 1.0 10/21/2024 AB24-1021-08 Cobalt ND ug/L 6.0 10/21/2024 AB24-1021-08 Copper ND ug/L 1.0 10/21/2024 AB24-1021-08 Iron ND ug/L 2.0.0 10/21/2024 AB24-1021-08 Lead ND ug/L 1.0 10/21/2024 AB24-1021-08 Midphybdenum 30 ug/L 5.0 10/21/2024 AB24-1021-08 Mickel 2 ug/L 2.0 10/21/2024 AB24-1021-08 Nickel 2 ug/L 1.0 10/21/2024 AB24-1021-08 Selenium 5 ug/L 1.0 10/21/2024 AB24-1021-08 Silver ND ug/L	Cadmium	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Cobalt ND ug/L 6.0 10/21/2024 AB24-1021-08 Copper ND ug/L 1.0 10/21/2024 AB24-1021-08 Iron ND ug/L 20.0 10/21/2024 AB24-1021-08 Lead ND ug/L 1.0 10/21/2024 AB24-1021-08 Lithium 13 ug/L 1.0 10/21/2024 AB24-1021-08 Magnesium 27800 ug/L 5.0 10/21/2024 AB24-1021-08 Molybdenum 30 ug/L 5.0 10/21/2024 AB24-1021-08 Nickel 2 ug/L 2.0 10/21/2024 AB24-1021-08 Potassium 5280 ug/L 1.0 10/21/2024 AB24-1021-08 Selenium 5 ug/L 1.0 10/21/2024 AB24-1021-08 Silver ND ug/L 0.2 10/21/2024 AB24-1021-08 Sodium 15200 ug/L 100.0 10/21/2024 AB24-1021-08 Vanadium ND	Calcium	52800		ug/L	1000.0	10/21/2024	AB24-1021-08
Copper ND ug/L 1.0 10/21/2024 AB24-1021-08 Iron ND ug/L 20.0 10/21/2024 AB24-1021-08 Lead ND ug/L 1.0 10/21/2024 AB24-1021-08 Lithium 13 ug/L 10.0 10/21/2024 AB24-1021-08 Magnesium 27800 ug/L 5.0 10/21/2024 AB24-1021-08 Molybdenum 30 ug/L 5.0 10/21/2024 AB24-1021-08 Nickel 2 ug/L 2.0 10/21/2024 AB24-1021-08 Potassium 5280 ug/L 10.0 10/21/2024 AB24-1021-08 Selenium 5 ug/L 0.2 10/21/2024 AB24-1021-08 Silver ND ug/L 0.2 10/21/2024 AB24-1021-08 Sodium 15200 ug/L 10.0 10/21/2024 AB24-1021-08 Thallium ND ug/L 2.0 10/21/2024 AB24-1021-08 Vanadium 14	Chromium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Iron	Cobalt	ND		ug/L	6.0	10/21/2024	AB24-1021-08
Lead ND ug/L 1.0 10/21/2024 AB24-1021-08 Lithium 13 ug/L 10.0 10/21/2024 AB24-1021-08 Magnesium 27800 ug/L 1000.0 10/21/2024 AB24-1021-08 Molybdenum 30 ug/L 5.0 10/21/2024 AB24-1021-08 Nickel 2 ug/L 100.0 10/21/2024 AB24-1021-08 Potassium 5280 ug/L 100.0 10/21/2024 AB24-1021-08 Selenium 5 ug/L 1.0 10/21/2024 AB24-1021-08 Silver ND ug/L 0.2 10/21/2024 AB24-1021-08 Sodium 15200 ug/L 1000.0 10/21/2024 AB24-1021-08 Sodium 15200 ug/L 2.0 10/21/2024 AB24-1021-08 Vanadium 14 ug/L 2.0 10/21/2024 AB24-1021-08 Variadium 14 ug/L 10.0 10/21/2024 AB24-1021-08 Mercury by EPA 74	Copper	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Lithium 13 ug/L 10.0 10/21/2024 AB24-1021-08 Magnesium 27800 ug/L 1000.0 10/21/2024 AB24-1021-08 Molybdenum 30 ug/L 5.0 10/21/2024 AB24-1021-08 Nickel 2 ug/L 2.0 10/21/2024 AB24-1021-08 Potassium 5280 ug/L 10.0 10/21/2024 AB24-1021-08 Selenium 5 ug/L 1.0 10/21/2024 AB24-1021-08 Selenium 5 ug/L 1.0 10/21/2024 AB24-1021-08 Soliver ND ug/L 0.2 10/21/2024 AB24-1021-08 Sodium 15200 ug/L 1000.0 10/21/2024 AB24-1021-08 Thallium ND ug/L 2.0 10/21/2024 AB24-1021-08 Vanadium 14 ug/L 2.0 10/21/2024 AB24-1021-08 Mercury by EPA 7470A, Total, Aqueous Flag Units RL Analysis Date Tracking	Iron	ND		ug/L	20.0	10/21/2024	AB24-1021-08
Magnesium 27800 ug/L 1000.0 10/21/2024 AB24-1021-08 Molybdenum 30 ug/L 5.0 10/21/2024 AB24-1021-08 Nickel 2 ug/L 2.0 10/21/2024 AB24-1021-08 Potassium 5280 ug/L 100.0 10/21/2024 AB24-1021-08 Selenium 5 ug/L 1.0 10/21/2024 AB24-1021-08 Silver ND ug/L 0.2 10/21/2024 AB24-1021-08 Sodium 15200 ug/L 1000.0 10/21/2024 AB24-1021-08 Thallium ND ug/L 2.0 10/21/2024 AB24-1021-08 Vanadium 14 ug/L 2.0 10/21/2024 AB24-1021-08 Zinc ND ug/L 10.0 10/21/2024 AB24-1021-08 Mercury by EPA 7470A, Total, Aqueous Result Flag Units RL Analysis Date Tracking Mercury by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous Aliquot #: 24-0858-01-C01-A02 AB24-1021-03 Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous Aliquot #:	Lead	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Molybdenum 30 ug/L 5.0 10/21/2024 AB24-1021-08 Nickel 2 ug/L 2.0 10/21/2024 AB24-1021-08 Potassium 5280 ug/L 100.0 10/21/2024 AB24-1021-08 Selenium 5 ug/L 1.0 10/21/2024 AB24-1021-08 Silver ND ug/L 0.2 10/21/2024 AB24-1021-08 Sodium 15200 ug/L 1000.0 10/21/2024 AB24-1021-08 Thallium ND ug/L 2.0 10/21/2024 AB24-1021-08 Vanadium 14 ug/L 2.0 10/21/2024 AB24-1021-08 Zinc ND ug/L 10.0 10/21/2024 AB24-1021-08 Mercury by EPA 7470A, Total, Aqueous Flag Units RL Analysis Date Tracking Mercury by EPA 300.0 CCR Rule Analyte List, Cl, F, SO4, Aqueous Aliquot #: 24-0858-01-C01-A02 AB24-1021-03 Anions by EPA 300.0 CCR Rule Analyte List, Cl, F, SO4, Aqueous Aliquot #: 24-0858-01-C02-A01 Analysi: Che	Lithium	13		ug/L	10.0	10/21/2024	AB24-1021-08
Nickel 2 ug/L 2.0 10/21/2024 AB24-1021-08 Potassium 5280 ug/L 100.0 10/21/2024 AB24-1021-08 Selenium 5 ug/L 1.0 10/21/2024 AB24-1021-08 Silver ND ug/L 0.2 10/21/2024 AB24-1021-08 Sodium 15200 ug/L 1000.0 10/21/2024 AB24-1021-08 Tallium ND ug/L 2.0 10/21/2024 AB24-1021-08 Vanadium 14 ug/L 2.0 10/21/2024 AB24-1021-08 Zinc ND ug/L 10.0 10/21/2024 AB24-1021-08 Mercury by EPA 7470A, Total, Aqueous Flag Units RL Analysis Date Tracking Mercury ND ug/L 0.2 10/21/2024 AB24-1021-03 Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous Aliquot #: 24-0858-01-C01-A01 Analysis: CLE Parameter(s) Result Flag Units RL Analysis Date Tracking	Magnesium	27800		ug/L	1000.0	10/21/2024	AB24-1021-08
Potassium 5280 ug/L 100.0 10/21/2024 AB24-1021-08 Selenium 5 ug/L 1.0 10/21/2024 AB24-1021-08 Silver ND ug/L 0.2 10/21/2024 AB24-1021-08 Sodium 15200 ug/L 1000.0 10/21/2024 AB24-1021-08 Thallium ND ug/L 2.0 10/21/2024 AB24-1021-08 Vanadium 14 ug/L 2.0 10/21/2024 AB24-1021-08 Zinc ND ug/L 10.0 10/21/2024 AB24-1021-08 Mercury by EPA 7470A, Total, Aqueous Flag Ug/L 10.0 10/21/2024 AB24-1021-08 Mercury by EPA 7470A, Total, Aqueous Result Flag Units RL Analysis Date Tracking Mercury by EPA 7470A, Total, Aqueous Result Flag Units RL Analysis Date Tracking Mercury by EPA 7470A, Total, Aqueous Result Flag Units RL Analysis Date Tracking Ani	Molybdenum	30		ug/L	5.0	10/21/2024	AB24-1021-08
Selenium 5 ug/L 1.0 10/21/2024 AB24-1021-08 Silver ND ug/L 0.2 10/21/2024 AB24-1021-08 Sodium 15200 ug/L 1000.0 10/21/2024 AB24-1021-08 Thallium ND ug/L 2.0 10/21/2024 AB24-1021-08 Vanadium 14 ug/L 2.0 10/21/2024 AB24-1021-08 Zinc ND ug/L 10.0 10/21/2024 AB24-1021-08 Mercury by EPA 7470A, Total, Aqueous Flag Units RL Analysis Date Tracking Mercury ND ug/L 0.2 10/21/2024 AB24-1021-03 Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous Aliquot #: 24-0858-01-C02-A01 Analysis KDR Parameter(s) Result Flag Units RL Analysis Date Tracking Chloride 17000 ug/L 1000.0 10/18/2024 AB24-1018-03 Fluoride ND ug/L 1000.0 10/18/2024 AB24-	Nickel	2		ug/L	2.0	10/21/2024	AB24-1021-08
Silver ND ug/L 0.2 10/21/2024 AB24-1021-08 Sodium 15200 ug/L 1000.0 10/21/2024 AB24-1021-08 Thallium ND ug/L 2.0 10/21/2024 AB24-1021-08 Vanadium 14 ug/L 2.0 10/21/2024 AB24-1021-08 Zinc ND ug/L 10.0 10/21/2024 AB24-1021-08 Mercury by EPA 7470A, Total, Aqueous Flag Units RL Analysis Date Tracking Mercury ND ug/L 0.2 10/21/2024 AB24-1021-03 Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous Aliquot #: 24-0858-01-C02-A01 Analysis KDR Parameter(s) Result Flag Units RL Analysis Date Tracking Chloride 17000 ug/L 1000.0 10/18/2024 AB24-1018-03 Fluoride ND ug/L 1000.0 10/18/2024 AB24-1018-03 Sulfate 78500 ug/L 1000.0 10/18/2024	Potassium	5280		ug/L	100.0	10/21/2024	AB24-1021-08
Sodium 15200 ug/L 1000.0 10/21/2024 AB24-1021-08 Thallium ND ug/L 2.0 10/21/2024 AB24-1021-08 Vanadium 14 ug/L 2.0 10/21/2024 AB24-1021-08 Zinc ND ug/L 10.0 10/21/2024 AB24-1021-08 Mercury by EPA 7470A, Total, Aqueous Aliquot #: 24-0858-01-C01-A02 Analyst: CLE Parameter(s) Result Flag Units RL Analysis Date Tracking Mercury ND ug/L 0.2 10/21/2024 AB24-1021-03 Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous Aliquot #: 24-0858-01-C02-A01 Analyst: KDR Parameter(s) Result Flag Units RL Analysis Date Tracking Chloride 17000 ug/L 1000.0 10/18/2024 AB24-1018-03 Fluoride ND ug/L 1000.0 10/18/2024 AB24-1018-03 Sulfate 78500 ug/L 1000.0 10/18/2024 AB24-1018-03<	Selenium	5		ug/L	1.0	10/21/2024	AB24-1021-08
Thallium ND ug/L 2.0 10/21/2024 AB24-1021-08 Vanadium 14 ug/L 2.0 10/21/2024 AB24-1021-08 Zinc ND ug/L 10.0 10/21/2024 AB24-1021-08 Mercury by EPA 7470A, Total, Aqueous Result Flag Units : 24-0858-01-C01-A02 Analyst: CLE Parameter(s) Result ND ug/L 0.2 10/21/2024 AB24-1021-03 Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous Aliquot #: 24-0858-01-C02-A01 Analyst: KDR Parameter(s) Result Flag Units RL Analysis Date Tracking Tracking Chloride 17000 ug/L 1000.0 10/18/2024 AB24-1018-03 Fluoride ND ug/L 1000.0 10/18/2024 AB24-1018-03 Sulfate 78500 ug/L 1000.0 10/18/2024 AB24-1018-03 Total Dissolved Solids by SM 2540C Aliquot #: 24-0858-01-C03-A01 Analyst: LMO Parameter(s) Result Flag Units RL Analysis Date Tracking	Silver	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Vanadium 14 ug/L 2.0 10/21/2024 AB24-1021-08 Zinc ND ug/L 10.0 10/21/2024 AB24-1021-08 Mercury by EPA 7470A, Total, Aqueous Aliquot #: 24-0858-01-C01-A02 Analyst: CLE Parameter(s) Result Flag Units RL Analysis Date Tracking Mercury ND ug/L 0.2 10/21/2024 AB24-1021-03 Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous Aliquot #: 24-0858-01-C02-A01 Analyst: KDR Parameter(s) Result Flag Units RL Analysis Date Tracking Chloride 17000 ug/L 1000.0 10/18/2024 AB24-1018-03 Fluoride ND ug/L 1000.0 10/18/2024 AB24-1018-03 Sulfate 78500 ug/L 1000.0 10/18/2024 AB24-1018-03 Total Dissolved Solids by SM 2540C Aliquot #: 24-0858-01-C03-A01 Analyst: LMO Parameter(s) Result Flag Units RL Analysis Date Tr	Sodium	15200		ug/L	1000.0	10/21/2024	AB24-1021-08
Zinc ND ug/L 10.0 10/21/2024 AB24-1021-08 Mercury by EPA 7470A, Total, Aqueous Aliquot #: 24-0858-01-C01-A02 Analyst: CLE Parameter(s) Result Flag Units RL Analysis Date Tracking Mercury ND ug/L 0.2 10/21/2024 AB24-1021-03 Anions by EPA 300.0 CCR Rule Analyte List, Cl, F, SO4, Aqueous Aliquot #: 24-0858-01-C02-A01 Analyst: KDR Parameter(s) Result Flag Units RL Analysis Date Tracking Chloride 17000 ug/L 1000.0 10/18/2024 AB24-1018-03 Fluoride ND ug/L 1000.0 10/18/2024 AB24-1018-03 Sulfate 78500 ug/L 1000.0 10/18/2024 AB24-1018-03 Total Dissolved Solids by SM 2540C Aliquot #: 24-0858-01-C03-A01 Analyst: LMO Parameter(s) Result Flag Units RL Analysis Date Tracking	Thallium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total, Aqueous Aliquot #: 24-0858-01-C01-A02 Analyst: CLE Parameter(s) Result Flag Units RL Analysis Date Tracking Mercury ND ug/L 0.2 10/21/2024 AB24-1021-03 Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous Aliquot #: 24-0858-01-C02-A01 Analyst: KDR Parameter(s) Result Flag Units RL Analysis Date Tracking Chloride 17000 ug/L 1000.0 10/18/2024 AB24-1018-03 Fluoride ND ug/L 1000.0 10/18/2024 AB24-1018-03 Sulfate 78500 ug/L 1000.0 10/18/2024 AB24-1018-03 Total Dissolved Solids by SM 2540C Aliquot #: 24-0858-01-C03-A01 Analyst: LMO Parameter(s) Result Flag Units RL Analysis Date Tracking	Vanadium	14		ug/L	2.0	10/21/2024	AB24-1021-08
Parameter(s) Result Flag Units RL Analysis Date Tracking Mercury ND ug/L 0.2 10/21/2024 AB24-1021-03 Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous Aliquot #: 24-0858-01-C02-A01 Analyst: KDR Parameter(s) Result Flag Units RL Analysis Date Tracking Chloride 17000 ug/L 1000.0 10/18/2024 AB24-1018-03 Fluoride ND ug/L 1000.0 10/18/2024 AB24-1018-03 Sulfate 78500 ug/L 1000.0 10/18/2024 AB24-1018-03 Total Dissolved Solids by SM 2540C Aliquot #: 24-0858-01-C03-A01 Analyst: LMO Parameter(s) Result Flag Units RL Analysis Date Tracking	Zinc	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Mercury ND ug/L 0.2 10/21/2024 AB24-1021-03 Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous Aliquot #: 24-0858-01-C02-A01 Analyst: KDR Parameter(s) Result Flag Units RL Analysis Date Tracking Chloride 17000 ug/L 1000.0 10/18/2024 AB24-1018-03 Fluoride ND ug/L 1000.0 10/18/2024 AB24-1018-03 Sulfate 78500 ug/L 1000.0 10/18/2024 AB24-1018-03 Total Dissolved Solids by SM 2540C Aliquot #: 24-0858-01-C03-A01 Analyst: LMO Parameter(s) Result Flag Units RL Analysis Date Tracking	Mercury by EPA 7470A, Total, A	Aqueous			Aliquot #: 24-0	858-01-C01-A02	Analyst: CLE
Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous Aliquot #: 24-0858-01-C02-A01 Analyst: KDR Parameter(s) Result Flag Units RL Analysis Date Tracking Chloride 17000 ug/L 1000.0 10/18/2024 AB24-1018-03 Fluoride ND ug/L 1000.0 10/18/2024 AB24-1018-03 Sulfate 78500 ug/L 1000.0 10/18/2024 AB24-1018-03 Total Dissolved Solids by SM 2540C Aliquot #: 24-0858-01-C03-A01 Analyst: LMO Parameter(s) Result Flag Units RL Analysis Date Tracking	Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Parameter(s) Result Flag Units RL Analysis Date Tracking Chloride 17000 ug/L 1000.0 10/18/2024 AB24-1018-03 Fluoride ND ug/L 1000.0 10/18/2024 AB24-1018-03 Sulfate 78500 ug/L 1000.0 10/18/2024 AB24-1018-03 Total Dissolved Solids by SM 2540C Parameter(s) Result Flag Units RL Analysis Date Tracking	Mercury	ND		ug/L	0.2	10/21/2024	AB24-1021-03
Chloride 17000 ug/L 1000.0 10/18/2024 AB24-1018-03 Fluoride ND ug/L 1000.0 10/18/2024 AB24-1018-03 Sulfate 78500 ug/L 1000.0 10/18/2024 AB24-1018-03 Total Dissolved Solids by SM 2540C Aliquot #: 24-0858-01-C03-A01 Analyst: LMO Parameter(s) Result Flag Units RL Analysis Date Tracking	Anions by EPA 300.0 CCR Rule	Analyte List, CI, F,	SO4, Aqı	ueous	Aliquot #: 24-0	858-01-C02-A01	Analyst: KDR
Fluoride ND ug/L 1000.0 10/18/2024 AB24-1018-03 Sulfate 78500 ug/L 1000.0 10/18/2024 AB24-1018-03 Total Dissolved Solids by SM 2540C Aliquot #: 24-0858-01-C03-A01 Analyst: LMO Parameter(s) Result Flag Units RL Analysis Date Tracking	Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfate 78500 ug/L 1000.0 10/18/2024 AB24-1018-03 Total Dissolved Solids by SM 2540C Aliquot #: 24-0858-01-C03-A01 Analyst: LMO Parameter(s) Result Flag Units RL Analysis Date Tracking	Chloride	17000		ug/L	1000.0	10/18/2024	AB24-1018-03
Total Dissolved Solids by SM 2540C Aliquot #: 24-0858-01-C03-A01 Analyst: LMO Parameter(s) Result Flag Units RL Analysis Date Tracking	Fluoride	ND		ug/L	1000.0	10/18/2024	AB24-1018-03
Parameter(s) Result Flag Units RL Analysis Date Tracking	Sulfate	78500		-		10/18/2024	
	Total Dissolved Solids by SM 2	540C			Aliquot #: 24-0	858-01-C03-A01	Analyst: LMO
Total Dissolved Solids 308 mg/L 10.0 10/17/2024 AB24-1017-02	Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
	Total Dissolved Solids	308		mg/L	10.0	10/17/2024	AB24-1017-02

Report Date: 10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0858

 Field Sample ID:
 JHC-MW-15006
 Collect Date:
 10/14/2024

 Lab Sample ID:
 24-0858-01
 Collect Time:
 06:51 PM

Alkalinity by SM 2320B		Aliquot #: 24-0	858-01-C04-A01	Analyst: DLS	
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	188000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Bicarbonate	188000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-07

10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0858

 Field Sample ID:
 JHC-MW-15007R
 Collect Date:
 10/14/2024

 Lab Sample ID:
 24-0858-02
 Collect Time:
 05:56 PM

Metals by EPA 6020B: CCR Rule Appe	endix III-IV 1	Total Metals	s Ехр	Aliquot #: 24-0	858-02-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Arsenic	6		ug/L	1.0	10/21/2024	AB24-1021-08
Barium	212		ug/L	5.0	10/21/2024	AB24-1021-08
Beryllium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Boron	1500		ug/L	20.0	10/21/2024	AB24-1021-08
Cadmium	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Calcium	63600		ug/L	1000.0	10/21/2024	AB24-1021-08
Chromium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Cobalt	ND		ug/L	6.0	10/21/2024	AB24-1021-08
Copper	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Iron	23		ug/L	20.0	10/21/2024	AB24-1021-08
Lead	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Lithium	15		ug/L	10.0	10/21/2024	AB24-1021-08
Magnesium	39200		ug/L	1000.0	10/21/2024	AB24-1021-08
Molybdenum	35		ug/L	5.0	10/21/2024	AB24-1021-08
Nickel	3		ug/L	2.0	10/21/2024	AB24-1021-08
Potassium	3960		ug/L	100.0	10/21/2024	AB24-1021-08
Selenium	5		ug/L	1.0	10/21/2024	AB24-1021-08
Silver	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Sodium	13800		ug/L	1000.0	10/21/2024	AB24-1021-08
Thallium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Vanadium	14		ug/L	2.0	10/21/2024	AB24-1021-08
Zinc	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total, Aqueou	ıs			Aliquot #: 24-0	858-02-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/21/2024	AB24-1021-03
Anions by EPA 300.0 CCR Rule Analys	te List, Cl, I	F, SO4, Aqı	ieous	Aliquot #: 24-0	858-02-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	17000		ug/L	1000.0	10/18/2024	AB24-1018-03
Fluoride	ND		ug/L	1000.0	10/18/2024	AB24-1018-03
Sulfate	91400		ug/L	1000.0	10/18/2024	AB24-1018-03
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	858-02-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	388		mg/L	10.0	10/17/2024	AB24-1017-02
	,	04 00E0 Dago	7 of 22			

Report Date: 10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0858

 Field Sample ID:
 JHC-MW-15007R
 Collect Date:
 10/14/2024

 Lab Sample ID:
 24-0858-02
 Collect Time:
 05:56 PM

Alkalinity by SM 2320B	Aliquot #: 24-0	858-02-C04-A01	Analyst: DLS		
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	243000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Bicarbonate	243000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-07

10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0858

 Field Sample ID:
 JHC-MW-15008R
 Collect Date:
 10/14/2024

 Lab Sample ID:
 24-0858-03
 Collect Time:
 03:41 PM

Parameter(s)	Result	Floor				
	Rooult	Flag	Units	RL	Analysis Date	Tracking
Antimony	1		ug/L	1.0	10/21/2024	AB24-1021-08
Arsenic	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Barium	117		ug/L	5.0	10/21/2024	AB24-1021-08
Beryllium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Boron	1780		ug/L	20.0	10/21/2024	AB24-1021-08
Cadmium	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Calcium	62800		ug/L	1000.0	10/21/2024	AB24-1021-08
Chromium	1		ug/L	1.0	10/21/2024	AB24-1021-08
Cobalt	ND		ug/L	6.0	10/21/2024	AB24-1021-08
Copper	2		ug/L	1.0	10/21/2024	AB24-1021-08
Iron	23		ug/L	20.0	10/21/2024	AB24-1021-08
Lead	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Lithium	19		ug/L	10.0	10/21/2024	AB24-1021-08
Magnesium	37300		ug/L	1000.0	10/21/2024	AB24-1021-08
Molybdenum	27		ug/L	5.0	10/21/2024	AB24-1021-08
Nickel	4		ug/L	2.0	10/21/2024	AB24-1021-08
Potassium	1950		ug/L	100.0	10/21/2024	AB24-1021-08
Selenium	12		ug/L	1.0	10/21/2024	AB24-1021-08
Silver	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Sodium	14600		ug/L	1000.0	10/21/2024	AB24-1021-08
Thallium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Vanadium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Zinc	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total, Aqueou	S			Aliquot #: 24-0	858-03-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/21/2024	AB24-1021-03
Anions by EPA 300.0 CCR Rule Analyt	te List, CI, F,	SO4, Aqı	ieous	Aliquot #: 24-0	858-03-C02-A01	Analyst: KDF
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	14400		ug/L	1000.0	10/18/2024	AB24-1018-03
Fluoride	ND		ug/L	1000.0	10/18/2024	AB24-1018-03
Sulfate	98500		ug/L	1000.0	10/18/2024	AB24-1018-03
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	858-03-C03-A01	Analyst: LMC
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
1 arameter(3)		•				

Report Date: 10/31/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0858

 Field Sample ID:
 JHC-MW-15008R
 Collect Date:
 10/14/2024

 Lab Sample ID:
 24-0858-03
 Collect Time:
 03:41 PM

Alkalinity by SM 2320B			Aliquot #: 24-0	858-03-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	262000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Bicarbonate	262000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-07

10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0858

 Field Sample ID:
 JHC-MW-15009R
 Collect Date:
 10/14/2024

 Lab Sample ID:
 24-0858-04
 Collect Time:
 02:16 PM

Metals by EPA 6020B: CCR Rule Appe		tai wictais		Aliquot #: 24-0	858-04-C01-A01	Analyst: EE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Arsenic	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Barium	249		ug/L	5.0	10/21/2024	AB24-1021-08
Beryllium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Boron	1940		ug/L	20.0	10/21/2024	AB24-1021-08
Cadmium	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Calcium	59900		ug/L	1000.0	10/21/2024	AB24-1021-08
Chromium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Cobalt	ND		ug/L	6.0	10/21/2024	AB24-1021-08
Copper	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Iron	ND		ug/L	20.0	10/21/2024	AB24-1021-08
Lead	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Lithium	12		ug/L	10.0	10/21/2024	AB24-1021-08
Magnesium	13100		ug/L	1000.0	10/21/2024	AB24-1021-08
Molybdenum	9		ug/L	5.0	10/21/2024	AB24-1021-08
Nickel	3		ug/L	2.0	10/21/2024	AB24-1021-08
Potassium	4110		ug/L	100.0	10/21/2024	AB24-1021-08
Selenium	80		ug/L	1.0	10/21/2024	AB24-1021-08
Silver	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Sodium	10700		ug/L	1000.0	10/21/2024	AB24-1021-08
Thallium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Vanadium	8		ug/L	2.0	10/21/2024	AB24-1021-08
Zinc	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total, Aqueous	s			Aliquot #: 24-0	858-04-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/21/2024	AB24-1021-03
Anions by EPA 300.0 CCR Rule Analyte	e List, Cl, F,	SO4, Aqı	ieous	Aliquot #: 24-0	858-04-C02-A01	Analyst: KDF
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	13600		ug/L	1000.0	10/18/2024	AB24-1018-03
Fluoride	ND		ug/L	1000.0	10/18/2024	AB24-1018-03
Sulfate	28400		ug/L	1000.0	10/18/2024	AB24-1018-03
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	858-04-C03-A01	Analyst: LMC
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking

Report Date: 10/31/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0858

 Field Sample ID:
 JHC-MW-15009R
 Collect Date:
 10/14/2024

 Lab Sample ID:
 24-0858-04
 Collect Time:
 02:16 PM

Alkalinity by SM 2320B			Aliquot #: 24-0	858-04-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	188000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Bicarbonate	188000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-07

10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0858

 Field Sample ID:
 JHC-MW-15011R
 Collect Date:
 10/14/2024

 Lab Sample ID:
 24-0858-05
 Collect Time:
 07:41 PM

Parameter(s) Antimony	Result					
Antimony		Flag	Units	RL	Analysis Date	Tracking
•	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Arsenic	5		ug/L	1.0	10/21/2024	AB24-1021-08
Barium	294		ug/L	5.0	10/21/2024	AB24-1021-08
Beryllium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Boron	3800		ug/L	20.0	10/21/2024	AB24-1021-08
Cadmium	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Calcium	47600		ug/L	1000.0	10/21/2024	AB24-1021-08
Chromium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Cobalt	ND		ug/L	6.0	10/21/2024	AB24-1021-08
Copper	1		ug/L	1.0	10/21/2024	AB24-1021-08
Iron	ND		ug/L	20.0	10/21/2024	AB24-1021-08
Lead	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Lithium	17		ug/L	10.0	10/21/2024	AB24-1021-08
Magnesium	10900		ug/L	1000.0	10/21/2024	AB24-1021-08
Molybdenum	11		ug/L	5.0	10/21/2024	AB24-1021-08
Nickel	3		ug/L	2.0	10/21/2024	AB24-1021-08
Potassium	3970		ug/L	100.0	10/21/2024	AB24-1021-08
Selenium	60		ug/L	1.0	10/21/2024	AB24-1021-08
Silver	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Sodium	9730		ug/L	1000.0	10/21/2024	AB24-1021-08
Thallium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Vanadium	11		ug/L	2.0	10/21/2024	AB24-1021-08
Zinc	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total, Aqueou	s			Aliquot #: 24-0	858-05-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/21/2024	AB24-1021-03
Anions by EPA 300.0 CCR Rule Analyt	e List, Cl, F,	SO4, Aqu	ieous	Aliquot #: 24-0	858-05-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	6600		ug/L	1000.0	10/18/2024	AB24-1018-03
Fluoride	ND		ug/L	1000.0	10/18/2024	AB24-1018-03
Sulfate	53700		ug/L	1000.0	10/18/2024	AB24-1018-03
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	858-05-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	225		mg/L	10.0	10/17/2024	AB24-1017-02

Report Date: 10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0858

 Field Sample ID:
 JHC-MW-15011R
 Collect Date:
 10/14/2024

 Lab Sample ID:
 24-0858-05
 Collect Time:
 07:41 PM

Alkalinity by SM 2320B			Aliquot #: 24-0	858-05-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	138000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Bicarbonate	138000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-07

10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0858

 Field Sample ID:
 DUP-02
 Collect Date:
 10/14/2024

 Lab Sample ID:
 24-0858-06
 Collect Time:
 12:00 AM

Metals by EPA 6020B: CCR Rule Appe	endix III-IV 1	Total Metals	s Ехр	Aliquot #: 24-0	858-06-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	1		ug/L	1.0	10/21/2024	AB24-1021-08
Arsenic	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Barium	116		ug/L	5.0	10/21/2024	AB24-1021-08
Beryllium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Boron	1840		ug/L	20.0	10/21/2024	AB24-1021-08
Cadmium	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Calcium	62300		ug/L	1000.0	10/21/2024	AB24-1021-08
Chromium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Cobalt	ND		ug/L	6.0	10/21/2024	AB24-1021-08
Copper	1		ug/L	1.0	10/21/2024	AB24-1021-08
Iron	ND		ug/L	20.0	10/21/2024	AB24-1021-08
Lead	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Lithium	19		ug/L	10.0	10/21/2024	AB24-1021-08
Magnesium	38100		ug/L	1000.0	10/21/2024	AB24-1021-08
Molybdenum	27		ug/L	5.0	10/21/2024	AB24-1021-08
Nickel	3		ug/L	2.0	10/21/2024	AB24-1021-08
Potassium	1940		ug/L	100.0	10/21/2024	AB24-1021-08
Selenium	12		ug/L	1.0	10/21/2024	AB24-1021-08
Silver	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Sodium	15100		ug/L	1000.0	10/21/2024	AB24-1021-08
Thallium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Vanadium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Zinc	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total, Aqueou	ıs			Aliquot #: 24-0	858-06-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/21/2024	AB24-1021-03
Anions by EPA 300.0 CCR Rule Analys	te List, Cl, F	F, SO4, Aqı	ieous	Aliquot #: 24-0	858-06-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	14300		ug/L	1000.0	10/18/2024	AB24-1018-03
Fluoride	ND		ug/L	1000.0	10/18/2024	AB24-1018-03
Sulfate	98700		ug/L	1000.0	10/18/2024	AB24-1018-03
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	858-06-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	372		mg/L	10.0	10/17/2024	AB24-1017-02
	2	4 0050 Dago 1	5 of 22			

Report Date: 10/31/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0858

 Field Sample ID:
 DUP-02
 Collect Date:
 10/14/2024

 Lab Sample ID:
 24-0858-06
 Collect Time:
 12:00 AM

Alkalinity by SM 2320B			Aliquot #: 24-0	858-06-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	230000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Bicarbonate	230000	ug/L	10000.0	10/22/2024	AB24-1021-07
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-07

10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0858

 Field Sample ID:
 FB-02
 Collect Date:
 10/14/2024

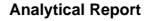
 Lab Sample ID:
 24-0858-07
 Collect Time:
 07:08 PM

Matrix: Water

Metals by EPA 6020B: CCR Rule Appe	ndix III-IV To	tai Metals	s Exp	Aliquot #: 24-0	858-07-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Arsenic	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Barium	ND		ug/L	5.0	10/21/2024	AB24-1021-08
Beryllium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Boron	ND		ug/L	20.0	10/21/2024	AB24-1021-08
Cadmium	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Calcium	ND		ug/L	1000.0	10/21/2024	AB24-1021-08
Chromium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Cobalt	ND		ug/L	6.0	10/21/2024	AB24-1021-08
Copper	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Iron	ND		ug/L	20.0	10/21/2024	AB24-1021-08
Lead	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Lithium	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Magnesium	ND		ug/L	1000.0	10/21/2024	AB24-1021-08
Molybdenum	ND		ug/L	5.0	10/21/2024	AB24-1021-08
Nickel	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Potassium	ND		ug/L	100.0	10/21/2024	AB24-1021-08
Selenium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Silver	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Sodium	ND		ug/L	1000.0	10/21/2024	AB24-1021-08
Thallium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Vanadium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Zinc	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total, Aqueou	S			Aliquot #: 24-0	Analyst: CLE	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/21/2024	AB24-1021-03
Anions by EPA 300.0 CCR Rule Analys	e List, CI, F,	SO4, Aqu	ieous	Aliquot #: 24-0	858-07-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	ND		ug/L	1000.0	10/18/2024	AB24-1018-03
Fluoride	ND		ug/L	1000.0	10/18/2024	AB24-1018-03
Sulfate	ND		ug/L	1000.0	10/18/2024	AB24-1018-03
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	858-07-C03-A01	Analyst: LMC
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	ND		mg/L	10.0	10/17/2024	AB24-1017-02
	24-	0858 Page 1	7 of 23			

10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE


Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0858

 Field Sample ID:
 EB-02
 Collect Date:
 10/14/2024

 Lab Sample ID:
 24-0858-08
 Collect Time:
 08:01 PM

Matrix: Water

Metals by EPA 6020B: CCR Rule Appe	ndix III-IV To	tal Metals	s Exp	Aliquot #: 24-0	858-08-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Arsenic	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Barium	ND		ug/L	5.0	10/21/2024	AB24-1021-08
Beryllium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Boron	ND		ug/L	20.0	10/21/2024	AB24-1021-08
Cadmium	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Calcium	ND		ug/L	1000.0	10/21/2024	AB24-1021-08
Chromium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Cobalt	ND		ug/L	6.0	10/21/2024	AB24-1021-08
Copper	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Iron	ND		ug/L	20.0	10/21/2024	AB24-1021-08
Lead	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Lithium	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Magnesium	ND		ug/L	1000.0	10/21/2024	AB24-1021-08
Molybdenum	ND		ug/L	5.0	10/21/2024	AB24-1021-08
Nickel	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Potassium	ND		ug/L	100.0	10/21/2024	AB24-1021-08
Selenium	ND		ug/L	1.0	10/21/2024	AB24-1021-08
Silver	ND		ug/L	0.2	10/21/2024	AB24-1021-08
Sodium	ND		ug/L	1000.0	10/21/2024	AB24-1021-08
Thallium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Vanadium	ND		ug/L	2.0	10/21/2024	AB24-1021-08
Zinc	ND		ug/L	10.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total, Aqueou	S			Aliquot #: 24-0	858-08-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/21/2024	AB24-1021-03
Anions by EPA 300.0 CCR Rule Analyt	e List, CI, F,	SO4, Aqu	ieous	Aliquot #: 24-0	858-08-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	ND		ug/L	1000.0	10/18/2024	AB24-1018-03
Fluoride	ND		ug/L	1000.0	10/18/2024	AB24-1018-03
Sulfate	ND		ug/L	1000.0	10/18/2024	AB24-1018-03
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	858-08-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	ND	_	mg/L	10.0	10/17/2024	AB24-1017-02
	24-	0858 Page 1	8 of 23			

10/31/24

Laboratory Services A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0858

Field Sample ID: JHC-MW-15007R MS

Matrix:

Collect Date: 10/14/2024 Lab Sample ID: 24-0858-09 Collect Time: 05:56 PM Groundwater

Metals by EPA 6020B: CCR Rule Appendix III-IV Total Metals Exp			Aliquot #: 24-0858-09-C01-A01		Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	104		%	1.0	10/21/2024	AB24-1021-08
Arsenic	111		%	1.0	10/21/2024	AB24-1021-08
Barium	107		%	5.0	10/21/2024	AB24-1021-08
Beryllium	101		%	1.0	10/21/2024	AB24-1021-08
Boron	106		%	20.0	10/21/2024	AB24-1021-08
Cadmium	104		%	0.2	10/21/2024	AB24-1021-08
Calcium	101		%	1000.0	10/21/2024	AB24-1021-08
Chromium	106		%	1.0	10/21/2024	AB24-1021-08
Cobalt	103		%	6.0	10/21/2024	AB24-1021-08
Copper	102		%	1.0	10/21/2024	AB24-1021-08
Iron	107		%	20.0	10/21/2024	AB24-1021-08
Lead	100		%	1.0	10/21/2024	AB24-1021-08
Lithium	101		%	10.0	10/21/2024	AB24-1021-08
Magnesium	108		%	1000.0	10/21/2024	AB24-1021-08
Molybdenum	110		%	5.0	10/21/2024	AB24-1021-08
Nickel	106		%	2.0	10/21/2024	AB24-1021-08
Potassium	106		%	100.0	10/21/2024	AB24-1021-08
Selenium	107		%	1.0	10/21/2024	AB24-1021-08
Silver	100		%	0.2	10/21/2024	AB24-1021-08
Sodium	107		%	1000.0	10/21/2024	AB24-1021-08
Thallium	102		%	2.0	10/21/2024	AB24-1021-08
Vanadium	106		%	2.0	10/21/2024	AB24-1021-08
Zinc	104		%	10.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total, Aqueous	3			Aliquot #: 24-0	858-09-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	83.0		%	0.2	10/21/2024	AB24-1021-03
Anions by EPA 300.0 CCR Rule Analyte	e List, Cl	, F, SO4, Aqı	ieous	Aliquot #: 24-0	858-09-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	102		%	1000.0	10/18/2024	AB24-1018-03
Fluoride	98		%	1000.0	10/18/2024	AB24-1018-03
Sulfate	106		%	1000.0	10/18/2024	AB24-1018-03

10/31/24

Laboratory Services A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Pond A Wells (395496) Laboratory Project: 24-0858

Lab Sample ID: Matrix: Groundwater

Field Sample ID: JHC-MW-15007R MSD Collect Date: 10/14/2024 24-0858-10 Collect Time: 05:56 PM

Metals by EPA 6020B: CCR R	ule Appendix III-IV Tot	al Metals Ex	p A	Aliquot #: 24-0858-10-C01-A01 Anal		
Parameter(s)	Result	Flag U	nits	RL	Analysis Date	Tracking
Antimony	102	%		1.0	10/21/2024	AB24-1021-08
Arsenic	108	%		1.0	10/21/2024	AB24-1021-08
Barium	106	%		5.0	10/21/2024	AB24-1021-08
Beryllium	101	%		1.0	10/21/2024	AB24-1021-08
Boron	109	%		20.0	10/21/2024	AB24-1021-08
Cadmium	101	%		0.2	10/21/2024	AB24-1021-08
Calcium	100	%		1000.0	10/21/2024	AB24-1021-08
Chromium	104	%		1.0	10/21/2024	AB24-1021-08
Cobalt	106	%		6.0	10/21/2024	AB24-1021-08
Copper	102	%		1.0	10/21/2024	AB24-1021-08
Iron	103	%		20.0	10/21/2024	AB24-1021-08
Lead	100	%		1.0	10/21/2024	AB24-1021-08
Lithium	99	%		10.0	10/21/2024	AB24-1021-08
Magnesium	110	%		1000.0	10/21/2024	AB24-1021-08
Molybdenum	109	%		5.0	10/21/2024	AB24-1021-08
Nickel	106	%		2.0	10/21/2024	AB24-1021-08
Potassium	103	%		100.0	10/21/2024	AB24-1021-08
Selenium	106	%		1.0	10/21/2024	AB24-1021-08
Silver	99.6	%		0.2	10/21/2024	AB24-1021-08
Sodium	110	%		1000.0	10/21/2024	AB24-1021-08
Thallium	103	%		2.0	10/21/2024	AB24-1021-08
Vanadium	111	%		2.0	10/21/2024	AB24-1021-08
Zinc	105	%		10.0	10/21/2024	AB24-1021-08
Mercury by EPA 7470A, Total	, Aqueous		Α	Aliquot #: 24-0	858-10-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag U	nits	RL	Analysis Date	Tracking
Mercury	94.0	%		0.2	10/21/2024	AB24-1021-03
Anions by EPA 300.0 CCR Ru	ıle Analyte List, Cl, F, S	SO4, Aqueou	us A	Aliquot #: 24-0	858-10-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag U	nits	RL	Analysis Date	Tracking
Chloride	105	%		1000.0	10/18/2024	AB24-1018-03
Fluoride	98	%		1000.0	10/18/2024	AB24-1018-03
Sulfate	111	%		1000.0	10/18/2024	AB24-1018-03

Report Date: 10/31/24

Data Qualifiers	Exception Summary
	No exceptions occurred.

CONSUMERS ENERGY

Chemistry Department

General Standard Operating Procedure

PROC CHEM-1.2.01 PAGE 1 OF 2 REVISION 5 ATTACHMENT A

TITLE:	SAMPLE LOG-IN -	SHIPMENT INSPECTION FORM

			on Date: 10.15.24		
ample Origin/Project Name:					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
hipment Delivered By: Ente	• •	•			•
			UPS		
_			Other/Carry In (who	m) <u>cu</u>	
Shipping Containers: Enter the		-			
Cooler					
Loose/Unpackaged Co	ontainers	•	Other		·
Condition of Shipment: Enter		,	of the shipment container		
Damaged Shipment O Other		-	Dented		ing
Shipment Security: Enter if a	ıny of the shi	ipping containe	ers were opened before rec	eipt.	
Shipping Containers F	Received: O	pened	Sealed	N/A	
Enclosed Documents: Enter the	he type of do	ocuments encl	osed with the shipment.		
Enclosed Documents: Enter the CoC Wo	ork Request _ Measure the	temperature o	Air Data Sheet	s.	,
Enclosed Documents: Enter the CoC Wo Femperature of Containers: In the Containers: In the Containers: In the Containers of Containers	ork Request _ Measure the ature Range_ ion <u>Usorn</u>	temperature o	Air Data Sheet f several sample container °C Samples Recei	s. ived on Ice: Yes <u>v</u>	,
Enclosed Documents: Enter the CoC Wo Femperature of Containers: In the Containers: In the Containers: In the Containers of Containers o	ork Request _ Measure the ature Range_ ion <u>Usorn</u> ners: Enter t	temperature of the control of the type and to	Air Data Sheet f several sample container °C Samples Received. 7.11.15 stal number of sample container	s. ived on Ice: Yes <u>v</u> ainers received.	/ No
Enclosed Documents: Enter the CoC Wo Temperature of Containers: It As-Received Temperature of M&TE # and Expiration Expiration Container Type	ork Request _ Measure the ature Range_ ion <u>Usornary</u> ners: Enter t	temperature of the control of the type and to	Air Data Sheet f several sample container °C Samples Recei	s. ived on Ice: Yes <u>v</u>	,
Enclosed Documents: Enter the CoC Wo Comperature of Containers: It As-Received Tempera M&TE # and Expiration Number and Type of Container Type VOA (40mL or 60mL)	ork Request _ Measure the ature Range_ ion <u>Usorr</u> ners: Enter t	temperature of the control of the type and to	Air Data Sheet f several sample container °C Samples Received. 7.11.15 stal number of sample container	s. ived on Ice: Yes <u>v</u> ainers received.	/ No
CoC Wo Comperature of Containers: I As-Received Tempera M&TE # and Expirati Number and Type of Contain Container Type VOA (40mL or 00mL) Quart/Ifite (g/pr)	ork Request _ Measure the ature Range_ ion <u>Usorm</u> ners: Enter t <u>Water</u> <u>IV</u>	temperature of the control of the type and to	Air Data Sheet f several sample container °C Samples Received. 7.11.15 stal number of sample container	s. ived on Ice: Yes <u>v</u> ainers received.	/ No
Enclosed Documents: Enter the CoC Wo Temperature of Containers: It As-Received Temperature of M&TE # and Expiration Enter Type VOA (40mL or 60mL) Quart/Lite (g/p) 9-oz (amber glass jar)	ork Request _ Measure the ature Range_ ion <u>Usorm</u> ners: Enter t <u>Water</u> <u>IV</u>	temperature of the control of the type and to	Air Data Sheet f several sample container °C Samples Received. 7.11.15 stal number of sample container	s. ived on Ice: Yes <u>v</u> ainers received.	/ No
CoC Wo Comperature of Containers: I As-Received Tempera M&TE # and Expirati Number and Type of Contain Container Type VOA (40mL or 00mL) Quart/Ifite (g/pr)	Measure the ature Range_tion <u>Usern</u> mers: Enter t <u>Water</u> <u>IU</u>	temperature of the control of the type and to	Air Data Sheet f several sample container °C Samples Received. 7.11.15 stal number of sample container	s. ived on Ice: Yes <u>v</u> ainers received.	No
CoC Wo Cemperature of Containers: I As-Received Tempera M&TE # and Expirati Number and Type of Contain Container Type VOA (40mL or 00ml) Quart/Lite (g/p) 9-oz (amber glass jar) 2-oz (amber glass)	Measure the ature Range_tion Usammers: Enter the Water 12	temperature of the control of the type and to	Air Data Sheet f several sample container °C Samples Received. 7.11.15 stal number of sample container	s. ived on Ice: Yes <u>v</u> ainers received.	No
CoC Wo Temperature of Containers: I As-Received Tempera M&TE # and Expirati Number and Type of Contain Container Type VOA (40mL or 60mL) Quart/Lite (g/p) 9-oz (amber glass jar) 2-oz (amber glass) 125 mL (plastic)	Measure the ature Range_tion <u>Usern</u> mers: Enter t <u>Water</u> <u>IU</u>	temperature of the control of the type and to	Air Data Sheet f several sample container °C Samples Recei p. 11. 25 Ital number of sample cont Other	s. ived on Ice: Yes <u>v</u> ainers received.	/ No

CHAIN OF CUSTODY

CONSUMERS ENERGY COMPANY - LABORATORY SERVICES

135 WEST TRAIL ST., JACKSON, MI 49201 • (517) 788-1251

Page _ 1 _ of _ 1 _

SAMP	LING SITE / CU	JSTOMER:			PROJECT NUMBER:	SAP CC or V	SAP CC or WO#:			ANALYSIS REQUESTED						QA REQUIREMENT:				
JHC	Q4-2024 Pon	d A Wells			24-0858 REQUESTER: Bethany Swanberg						(Attach List if More Space is Needed)					QA REQUIREMENT:				
SAMP	LING TEAM:	L.			TURNAROUND TIME REQUIRED:														☐ NPDES	
	Cl	E			□ 24 HR □ 48 HR □ 3 DAYS □ STANDARD ☒ OTHER			40								⊠ TNI				
SENI	REPORT TO:	Joseph Firlit			email: phone: MATRIX CODES: GW = Groundwater OX = Other WW = Wastewater SL = Sludge W = Water / Aqueous Liquid S = Soil / General Solid WP = Wipe															☐ ISO 17025
(COPY TO:	JR Register						1	CONTAINERS										□ 10 CFR 50 APP. B	
		TRC					TOTAL#	#		PRESERVATIVE		VE	Metals			ity	226	228		☐ INTERNAL INFO
LAB		SAMPLE COLL	LECTION	MATRIX				စ္ခ	°O°	7 H	_ :	er	Total M	Anions	S	Alkalinity	Radium 2	Radium		□ OTHER
SA	AMPLE ID	DATE	TIME	MAJ	FIELD SAMPLE ID / LO	FIELD SAMPLE ID / LOCATION		Nor	None HNO ₃		NaOH HCI MeOH Other		To	An	TDS	Alk	Rac	Rac		REMARKS
2	4-0858-01	10.14.24	1851	GW	JHC-MW-15006		7	4	3				x	x	x	x	x	x		
	-02	10.14.24	1756	GW	JHC-MW-15007R		7	4	3				x	x	X	х	x	x		
	-03	10.14.24	1541	GW	JHC-MW-15008R		7	4	3				x	x	x	x	x	х		
	-04	10.14.24	1416	GW	JHC-MW-15009R		7	4	3				x	x	x	x	x	x		
r	-05	10.14.24	1941	GW	JHC-MW-15011R	JHC-MW-15011R		4	3				x	x	x	x	x	x		
	-06	10.14.24	_	GW	DUP-02		7	4	3				x	x	x	x	x	x		
	-07	10.14.24	1908	W	FB-02		5	2	3				x	x	x		x	x		
	-08	10.14.24	2001	W	EB-02		5	2	3				x	x	x		х	x		
	-09	10.14.24	1754	GW	JHC-MW-15007R MS		2	1	1				x	x						
	-10	10.14.24	1756	GW	JHC-MW-15007R MSD		2	1	i				x	x						
DELIN	QUISHED BY:			DATE/	TIME:	RECEIVED BY:							CO	MME	NTS					
						Tuni Be	21													
RELIN	QUISHED BY:	thut		DATE/	1-24/1206 TIME:	RECEIVED BY:	ela.													E#: <u>L\$477733</u>
					24	4-08 58 Page 23 o	f 23					-	Ten	npera	ture:	0.8	3-2	. 2 °C	Cal. I	Oue Date: 6-27-25

135 W. Trail St. Jackson, MI 49201 phone 517-788-1251 fax 517-788-2533

To: JJFirlit, JH Campbell Complex

From: EBlaj, T-258

Date: October 31, 2024

Subject: JH CAMPBELL SOLID WASTE DISPOSAL AREA – GROUNDWATER MONITORING

4th Quarter, 2024 – Supplemental and GSI Wells

CC: HDRegister, P22-521 Sarah Holmstrom, Project Manager

ADSantini, P20-215B-REM TRC Companies, Inc. 1540 Eisenhower Place

Ann Arbor, MI 48108

Chemistry Project: 24-0860

CE Laboratory Services conducted groundwater monitoring at the JH Campbell Solid Waste Disposal Area during the week of 10/14/2024, for the 4th Quarter requirement, as specified in the Hydrogeological Monitoring Plan for the site. Samples were not collected from MW-13; the well was dry. All other samples were received for analysis by the Chemistry department on 10/16/2024.

Samples for Radium analysis have been subcontracted to Eurofins/TestAmerica, Inc. and their results are being reported separately. Please note that the subcontracted work is not reported under the CE laboratory scope of accreditation.

The report that follows presents the results of the requested analytical testing; the results apply only to the samples, as received. All samples have been analyzed in accordance with the 2016 TNI Standard and the applicable A2LA accreditation scope for Laboratory Services. Any exceptions to applicable test method criteria and standard compliance are noted in the Case Narrative or flagged with applicable qualifiers in the analytical results section.

Reviewed and approved by:

Emil Blaj Sr. Technical Analyst Project Lead

Testing performed in accordance with the A2LA scope of accredidation specified in the listed certificate.

The information contained in this report is the sole property of Consumers Energy. It cannot be reproduced except in full, and with consent from Consumers Energy, or the customer for which this report was issued.

CASE NARRATIVE

I. Sample Receipt

All samples were received within hold time and in good conditions; no anomalies were noted on the Sample Log-In Shipment Inspection Form during sample check-in. Identification of all samples included in the work order/project is provided in the sample summary section. Sample preservation upon receipt was verified by the sample custodian and confirmed to meet method requirements.

II. Methodology

Unless otherwise indicated, sample preparation and analysis was performed in accordance with the corresponding test methods from "Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100); SW-846, "Test Methods for Evaluating Solid Waste – Physical/Chemical Methods", USEPA (latest revisions), and Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 22nd Edition, 2012.

III. Results/Quality Control

Analytical results for this report are presented by laboratory sample ID, container & aliquot number. Results for the field blanks, field duplicates, and percent recoveries of the field matrix spike & matrix spike duplicate samples are included in the results section. Unless specifically noted in the case narrative, all method quality control requirements have been met. If any results are qualified, the corresponding data flags/qualifiers are listed on the last page of the results section. Any additional information on method performance, when applicable, is presented in this section of the case narrative. When data flags are not needed, the qualifiers text box on the last page is left blank, and a statement confirms that no exceptions occurred.

DEFINITIONS / QUALIFIERS

The following qualifiers and/or acronyms are used in the report where applicable:

Acronym	Description
RL	Reporting Limit
ND	Result not detected or below Reporting Limit
NT	Not a TNI Analyte
LCS	Laboratory Control Sample
LRB	Laboratory Reagent Blank (also referred to as Method Blank)
DUP	Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
RPD	Relative Percent Difference
MDL	Method Detection Limit
PQL	Practical Quantitation Limit
TDL	Target Detection Limit
SM	Standard Methods Compendium
Qualifier	Description
*	Generic data flag, applicable description added in the corresponding notes section
В	The analyte was detected in the LRB at a level which is significant relative to sample result

D	Reporting limit elevated due to dilution
E	Estimated due to result exceeding the linear range of the analyzer
Н	The maximum recommended hold time was exceeded
I	Dilution required due to matrix interference; reporting limit elevated
J	Estimated due to result found above MDL but below PQL (or RL)
K	Reporting limit raised due to matrix interference
M	The precision for duplicate analysis was not met; RPD outside acceptance criteria
N	Non-homogeneous sample made analysis questionable
PI	Possible interference may have affected the accuracy of the laboratory result
Q	Matrix Spike or Matrix Spike Duplicate recovery outside acceptance criteria
R	Result confirmed by new sample preparation and reanalysis
X	Other notation required: comment listed in sample notes and/or case narrative

Work Order Sample Summary

Customer Name: JH Campbell Complex

Work Order ID: Q4-2024 Supplemental Wells

Date Received: 10/16/2024 **Chemistry Project:** 24-0860

Sample #	Field Sample ID	<u>Matrix</u>	Sample Date	<u>Site</u>
24-0860-01	MW-14S	Groundwater	10/15/2024 16:11	JHC GW Monitoring - Supplemental Wells
24-0860-02	PZ-23S	Groundwater	10/15/2024 12:17	JHC GW Monitoring - Supplemental Wells
24-0860-03	PZ-24S	Groundwater	10/15/2024 17:08	JHC GW Monitoring - Supplemental Wells
24-0860-04	PZ-24	Groundwater	10/15/2024 18:44	JHC GW Monitoring - Supplemental Wells
24-0860-05	PZ-40S	Groundwater	10/15/2024 14:51	JHC GW Monitoring - Supplemental Wells
24-0860-06	PZ-40	Groundwater	10/15/2024 15:44	JHC GW Monitoring - Supplemental Wells
24-0860-07	TW-19-05	Groundwater	10/15/2024 18:41	JHC GW Monitoring - Supplemental Wells
24-0860-08	TW-19-06A	Groundwater	10/15/2024 17:21	JHC GW Monitoring - Supplemental Wells
24-0860-09	DUP-07	Groundwater	10/15/2024 00:00	JHC GW Monitoring - Supplemental Wells
24-0860-10	TW-19-06A MS	Groundwater	10/15/2024 17:21	JHC GW Monitoring - Supplemental Wells
24-0860-11	TW-19-06A MSD	Groundwater	10/15/2024 17:21	JHC GW Monitoring - Supplemental Wells

10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0860

 Field Sample ID:
 MW-14S
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0860-01
 Collect Time:
 04:11 PM

Darameter(a)	Pocult	Elec-	Haita	DI	Analysis Data	Tunakina
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/22/2024	AB24-1021-03
Metals by EPA 6020B: CCR Rule Appendix III-IV Total Metals Ex				Aliquot #: 24-0)860-01-C01-A02	Analyst: EE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Arsenic	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Barium	35		ug/L	5.0	10/22/2024	AB24-1022-06
Beryllium	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Boron	45		ug/L	20.0	10/22/2024	AB24-1022-06
Cadmium	ND		ug/L	0.2	10/22/2024	AB24-1022-06
Calcium	4250		ug/L	1000.0	10/22/2024	AB24-1022-06
Chromium	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Cobalt	ND		ug/L	6.0	10/22/2024	AB24-1022-06
Copper	2		ug/L	1.0	10/22/2024	AB24-1022-06
Iron	127		ug/L	20.0	10/22/2024	AB24-1022-06
Lead	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Lithium	ND		ug/L	10.0	10/22/2024	AB24-1022-06
Magnesium	2360		ug/L	1000.0	10/22/2024	AB24-1022-06
Molybdenum	9		ug/L	5.0	10/22/2024	AB24-1022-06
Nickel	ND		ug/L	2.0	10/22/2024	AB24-1022-06
Potassium	212		ug/L	100.0	10/22/2024	AB24-1022-06
Selenium	1		ug/L	1.0	10/22/2024	AB24-1022-06
Silver	ND		ug/L	0.2	10/22/2024	AB24-1022-06
Sodium	1640		ug/L	1000.0	10/22/2024	AB24-1022-06
Thallium	ND		ug/L	2.0	10/22/2024	AB24-1022-06
Vanadium	ND		ug/L	2.0	10/22/2024	AB24-1022-06
Zinc	ND		ug/L	10.0	10/22/2024	AB24-1022-06
Anions by EPA 300.0 CCR Rule Ana	lvte List. Cl. F.	SO4. Agu	ieous	Aliguot #: 24-0	0860-01-C02-A01	Analyst: KDF
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	ND	3	ug/L	1000.0	10/18/2024	AB24-1017-0
Fluoride	ND		ug/L	1000.0	10/18/2024	AB24-1017-0
Sulfate	9350		ug/L	1000.0	10/18/2024	AB24-1017-0
Total Dissolved Solids by SM 25400	•			Aliquet #: 24 (1860-01-C03 A04	Analyst: LMC
Parameter(s)	Result	Flag	Units	RL	0860-01-C03-A01 Analysis Date	Tracking
• •		· iug			_	_
Total Dissolved Solids	40		mg/L	10.0	10/17/2024	AB24-1017-03

Report Date: 10/31/24

AB24-1024-01

AB24-1024-01

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0860

 Field Sample ID:
 MW-14S
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0860-01
 Collect Time:
 04:11 PM

Matrix: Groundwater

Vanadium

Boron

Alkalinity by SM 2320B		Aliquot #: 24-0	860-01-C04-A01	Analyst: DLS		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Alkalinity Total	15200	ι	ug/L	10000.0	10/22/2024	AB24-1021-09
Alkalinity Bicarbonate	15200	ι	ug/L	10000.0	10/22/2024	AB24-1021-09
Alkalinity Carbonate	ND	ι	ug/L	10000.0	10/22/2024	AB24-1021-09
Groundwater Metals by EPA 60)20A, Dissolved, JH(C List		Aliquot #: 24-0	860-01-C08-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND	ι	ug/L	1.0	10/24/2024	AB24-1024-01
Arsenic	ND	ι	ug/L	1.0	10/24/2024	AB24-1024-01
Chromium	ND	ι	ug/L	1.0	10/24/2024	AB24-1024-01
Lithium	ND	ι	ug/L	10.0	10/24/2024	AB24-1024-01
Molybdenum	9	ι	ug/L	5.0	10/24/2024	AB24-1024-01
Nickel	ND	ι	ug/L	2.0	10/24/2024	AB24-1024-01
Selenium	ND	ι	ug/L	1.0	10/24/2024	AB24-1024-01

ug/L

ug/L

2.0

20.0

10/24/2024

10/24/2024

ND

31

10/31/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0860

 Field Sample ID:
 PZ-23S
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0860-02
 Collect Time:
 12:17 PM

	_					Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/22/2024	AB24-1021-03
Metals by EPA 6020B: CCR Rule Appendix III-IV Total Metals Exp				Aliquot #: 24-0	860-02-C01-A02	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Arsenic	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Barium	ND		ug/L	5.0	10/22/2024	AB24-1022-06
Beryllium	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Boron	24		ug/L	20.0	10/22/2024	AB24-1022-06
Cadmium	ND		ug/L	0.2	10/22/2024	AB24-1022-06
Calcium	5060		ug/L	1000.0	10/22/2024	AB24-1022-06
Chromium	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Cobalt	ND		ug/L	6.0	10/22/2024	AB24-1022-06
Copper	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Iron	42		ug/L	20.0	10/22/2024	AB24-1022-06
Lead	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Lithium	ND		ug/L	10.0	10/22/2024	AB24-1022-06
Magnesium	1210		ug/L	1000.0	10/22/2024	AB24-1022-06
Molybdenum	ND		ug/L	5.0	10/22/2024	AB24-1022-06
Nickel	ND		ug/L	2.0	10/22/2024	AB24-1022-06
Potassium	751		ug/L	100.0	10/22/2024	AB24-1022-06
Selenium	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Silver	ND		ug/L	0.2	10/22/2024	AB24-1022-06
Sodium	ND		ug/L	1000.0	10/22/2024	AB24-1022-06
Thallium	ND		ug/L	2.0	10/22/2024	AB24-1022-06
Vanadium	ND		ug/L	2.0	10/22/2024	AB24-1022-06
Zinc	ND		ug/L	10.0	10/22/2024	AB24-1022-06
Anions by EPA 300.0 CCR Rule A	analyte List, Cl, F,	SO4, Aqu	ieous	Aliquot #: 24-0	860-02-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	ND		ug/L	1000.0	10/18/2024	AB24-1017-01
Fluoride	ND		ug/L	1000.0	10/18/2024	AB24-1017-01
Sulfate	2280		ug/L	1000.0	10/18/2024	AB24-1017-01
Total Dissolved Solids by SM 254	10C			Aliquot #: 24-0	860-02-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	31		mg/L	10.0	10/17/2024	AB24-1017-03

Report Date: 10/31/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0860

 Field Sample ID:
 PZ-23S
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0860-02
 Collect Time:
 12:17 PM

Alkalinity by SM 2320B				Aliquot #: 24-0	860-02-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Ur	nits	RL	Analysis Date	Tracking
Alkalinity Total	19700	ug/l	L	10000.0	10/22/2024	AB24-1021-09
Alkalinity Bicarbonate	19700	ug/l	L	10000.0	10/22/2024	AB24-1021-09
Alkalinity Carbonate	ND	ug/l	L	10000.0	10/22/2024	AB24-1021-09
Groundwater Metals by EPA 60	020A, Dissolved, JH0	C List		Aliquot #: 24-0	860-02-C08-A01	Analyst: EB

Groundwater Metals by EF	Groundwater Metals by EPA 6020A, Dissolved, JHC List			0860-02-C08-A01	Analyst: EB
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Antimony	ND	ug/L	1.0	10/24/2024	AB24-1024-01
Arsenic	ND	ug/L	1.0	10/24/2024	AB24-1024-01
Chromium	ND	ug/L	1.0	10/24/2024	AB24-1024-01
Lithium	ND	ug/L	10.0	10/24/2024	AB24-1024-01
Molybdenum	ND	ug/L	5.0	10/24/2024	AB24-1024-01
Nickel	ND	ug/L	2.0	10/24/2024	AB24-1024-01
Selenium	ND	ug/L	1.0	10/24/2024	AB24-1024-01
Vanadium	ND	ug/L	2.0	10/24/2024	AB24-1024-01
Boron	ND	ug/L	20.0	10/24/2024	AB24-1024-01

10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0860

 Field Sample ID:
 PZ-24S
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0860-03
 Collect Time:
 05:08 PM

Mercury by EPA 7470A, Total,	rcury by EPA 7470A, Total, Aqueous Aliquot #: 24-0860-03-C01-A01		Analyst: CLE		
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Mercury	ND	ug/L	0.2	10/22/2024	AB24-1021-03
Metals by EPA 6020B: CCR Rul	le Appendix III-IV To	tal Metals Exp	Aliquot #: 24-0	0860-03-C01-A02	Analyst: EE
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Antimony	ND	ug/L	1.0	10/22/2024	AB24-1022-06
Arsenic	3	ug/L	1.0	10/22/2024	AB24-1022-06
Barium	18	ug/L	5.0	10/22/2024	AB24-1022-06
Beryllium	ND	ug/L	1.0	10/22/2024	AB24-1022-06
Boron	29	ug/L	20.0	10/22/2024	AB24-1022-06
Cadmium	ND	ug/L	0.2	10/22/2024	AB24-1022-06
Calcium	9250	ug/L	1000.0	10/22/2024	AB24-1022-06
Chromium	ND	ug/L	1.0	10/22/2024	AB24-1022-06
Cobalt	ND	ug/L	6.0	10/22/2024	AB24-1022-06
Copper	ND	ug/L	1.0	10/22/2024	AB24-1022-06
Iron	5550	ug/L	20.0	10/22/2024	AB24-1022-06
Lead	ND	ug/L	1.0	10/22/2024	AB24-1022-06
Lithium	ND	ug/L	10.0	10/22/2024	AB24-1022-06
Magnesium	1270	ug/L	1000.0	10/22/2024	AB24-1022-06
Molybdenum	ND	ug/L	5.0	10/22/2024	AB24-1022-06
Nickel	ND	ug/L	2.0	10/22/2024	AB24-1022-06
Potassium	585	ug/L	100.0	10/22/2024	AB24-1022-06
Selenium	ND	ug/L	1.0	10/22/2024	AB24-1022-06
Silver	ND	ug/L	0.2	10/22/2024	AB24-1022-06
Sodium	1420	ug/L	1000.0	10/22/2024	AB24-1022-06
Thallium	ND	ug/L	2.0	10/22/2024	AB24-1022-06
Vanadium	ND	ug/L	2.0	10/22/2024	AB24-1022-06
Zinc	ND	ug/L	10.0	10/22/2024	AB24-1022-06
Anions by EPA 300.0 CCR Rule	Analyte List, Cl, F,	SO4, Aqueous	Aliquot #: 24-0)860-03-C02-A01	Analyst: KDF
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Chloride	1220	ug/L	1000.0	10/18/2024	AB24-1017-01
Fluoride	ND	ug/L	1000.0	10/18/2024	AB24-1017-01
Sulfate	24600	ug/L	1000.0	10/18/2024	AB24-1017-01
Total Dissolved Solids by SM 2	540C		Aliquot #: 24-0	0860-03-C03-A01	Analyst: LMC
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Total Dissolved Solids	84	mg/L	10.0	10/17/2024	AB24-1017-03
		.			

Report Date: 10/31/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0860

 Field Sample ID:
 PZ-24S
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0860-03
 Collect Time:
 05:08 PM

Alkalinity by SM 2320B			Aliquot #: 24-0	0860-03-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Uni	ts RL	Analysis Date	Tracking
Alkalinity Total	ND	ug/L	10000.0	10/22/2024	AB24-1021-09
Alkalinity Bicarbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-09
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-09
Groundwater Metals by EPA 602	20A, Dissolved, JHO	C List	Aliquot #: 24-0	0860-03-C08-A01	Analyst: EB
Parameter(s)	Result	Flag Uni	ts RL	Analysis Date	Tracking
Antimony	ND	ug/L	1.0	10/24/2024	AB24-1024-01
Arsenic	3	ug/L	1.0	10/24/2024	AB24-1024-01
Chromium	ND	ug/L	1.0	10/24/2024	AB24-1024-01
Lithium	ND	ug/L	10.0	10/24/2024	AB24-1024-01
Molybdenum	ND	ug/L	5.0	10/24/2024	AB24-1024-01
Nickel	ND	ug/L	2.0	10/24/2024	AB24-1024-01
Selenium	ND	ug/L	1.0	10/24/2024	AB24-1024-01
Vanadium	2	ug/L	2.0	10/24/2024	AB24-1024-01
Boron	20	ug/L	20.0	10/24/2024	AB24-1024-01

10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0860

 Field Sample ID:
 PZ-24
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0860-04
 Collect Time:
 06:44 PM

Metals by EPA 6020B: CCR Rule Apper		tai wictai.		Aliquot #: 24-0	860-04-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Arsenic	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Barium	20		ug/L	5.0	10/22/2024	AB24-1022-06
Beryllium	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Boron	199		ug/L	20.0	10/22/2024	AB24-1022-06
Cadmium	ND		ug/L	0.2	10/22/2024	AB24-1022-06
Calcium	32200		ug/L	1000.0	10/22/2024	AB24-1022-06
Chromium	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Cobalt	ND		ug/L	6.0	10/22/2024	AB24-1022-06
Copper	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Iron	6340		ug/L	20.0	10/22/2024	AB24-1022-06
Lead	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Lithium	ND		ug/L	10.0	10/22/2024	AB24-1022-06
Magnesium	10000		ug/L	1000.0	10/22/2024	AB24-1022-06
Molybdenum	10		ug/L	5.0	10/22/2024	AB24-1022-06
Nickel	ND		ug/L	2.0	10/22/2024	AB24-1022-06
Potassium	1960		ug/L	100.0	10/22/2024	AB24-1022-06
Selenium	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Silver	ND		ug/L	0.2	10/22/2024	AB24-1022-06
Sodium	3170		ug/L	1000.0	10/22/2024	AB24-1022-06
Thallium	ND		ug/L	2.0	10/22/2024	AB24-1022-06
Vanadium	ND		ug/L	2.0	10/22/2024	AB24-1022-06
Zinc	16		ug/L	10.0	10/22/2024	AB24-1022-06
Mercury by EPA 7470A, Total, Aqueous	5			Aliquot #: 24-0	860-04-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/22/2024	AB24-1022-04
Anions by EPA 300.0 CCR Rule Analyte	e List, CI, F,	SO4, Aqı	ieous	Aliquot #: 24-0	860-04-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	2110		ug/L	1000.0	10/18/2024	AB24-1017-01
Fluoride	ND		ug/L	1000.0	10/18/2024	AB24-1017-01
Sulfate	86800		ug/L	1000.0	10/18/2024	AB24-1017-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	860-04-C03-A01	Analyst: LMO
					<u> </u>	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking

Report Date: 10/31/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0860

 Field Sample ID:
 PZ-24
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0860-04
 Collect Time:
 06:44 PM

Alkalinity by SM 2320B			Aliquot #: 24-0	860-04-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	47000	ug/L	10000.0	10/22/2024	AB24-1021-09
Alkalinity Bicarbonate	47000	ug/L	10000.0	10/22/2024	AB24-1021-09
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-09

10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0860

 Field Sample ID:
 PZ-40S
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0860-05
 Collect Time:
 02:51 PM

Metals by EPA 6020B: CCR Rule Apper				Aliquot #: 24-0	860-05-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Arsenic	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Barium	31		ug/L	5.0	10/22/2024	AB24-1022-06
Beryllium	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Boron	70		ug/L	20.0	10/22/2024	AB24-1022-06
Cadmium	ND		ug/L	0.2	10/22/2024	AB24-1022-06
Calcium	2160		ug/L	1000.0	10/22/2024	AB24-1022-06
Chromium	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Cobalt	ND		ug/L	6.0	10/22/2024	AB24-1022-06
Copper	1		ug/L	1.0	10/22/2024	AB24-1022-06
Iron	164		ug/L	20.0	10/22/2024	AB24-1022-06
Lead	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Lithium	ND		ug/L	10.0	10/22/2024	AB24-1022-06
Magnesium	ND		ug/L	1000.0	10/22/2024	AB24-1022-06
Molybdenum	ND		ug/L	5.0	10/22/2024	AB24-1022-06
Nickel	ND		ug/L	2.0	10/22/2024	AB24-1022-06
Potassium	188		ug/L	100.0	10/22/2024	AB24-1022-06
Selenium	1		ug/L	1.0	10/22/2024	AB24-1022-06
Silver	ND		ug/L	0.2	10/22/2024	AB24-1022-06
Sodium	1930		ug/L	1000.0	10/22/2024	AB24-1022-06
Thallium	ND		ug/L	2.0	10/22/2024	AB24-1022-06
Vanadium	ND		ug/L	2.0	10/22/2024	AB24-1022-06
Zinc	ND		ug/L	10.0	10/22/2024	AB24-1022-06
Mercury by EPA 7470A, Total, Aqueous	5			Aliquot #: 24-0	860-05-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/22/2024	AB24-1022-04
Anions by EPA 300.0 CCR Rule Analyte	e List, CI, F,	SO4, Aqı	ieous	Aliquot #: 24-0	860-05-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	1950		ug/L	1000.0	10/18/2024	AB24-1017-01
Fluoride	ND		ug/L	1000.0	10/18/2024	AB24-1017-01
Sulfate	6730		ug/L	1000.0	10/18/2024	AB24-1017-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	860-05-C03-A01	Analyst: LMO
-						
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking

Report Date: 10/31/24

Laboratory Services A CENTURY OF EXCELLENCE

JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: Sample Site: 24-0860

Collect Date: Field Sample ID: PZ-40S 10/15/2024 Lab Sample ID: 24-0860-05 Collect Time: 02:51 PM

Matrix: Groundwater

Alkalinity by SM 2320B			Aliquot #: 24-0	0860-05-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Uni	ts RL	Analysis Date	Tracking
Alkalinity Total	ND	ug/L	10000.0	10/22/2024	AB24-1021-09
Alkalinity Bicarbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-09
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-09
Groundwater Metals by EPA 602	0A, Dissolved, JH	C List	Aliquot #: 24-0	0860-05-C08-A01	Analyst: EB
Parameter(s)	Result	Flag Uni	ts RL	Analysis Date	Tracking
Antimony	ND	ug/L	1.0	10/24/2024	AB24-1024-01
Arsenic	ND	ug/L	1.0	10/24/2024	AB24-1024-01
Chromium	ND	ug/L	1.0	10/24/2024	AB24-1024-01
Lithium	ND	ug/L	10.0	10/24/2024	AB24-1024-01
Molybdenum	ND	ug/L	5.0	10/24/2024	AB24-1024-01
Nickel	ND	ug/L	2.0	10/24/2024	AB24-1024-01
Selenium	1	ug/L	1.0	10/24/2024	AB24-1024-01
Vanadium	ND	ug/L	2.0	10/24/2024	AB24-1024-01
Boron	57	ug/L	20.0	10/24/2024	AB24-1024-01

10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0860

 Field Sample ID:
 PZ-40
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0860-06
 Collect Time:
 03:44 PM

Metals by EPA 6020B: CCR Rule Appe	ndix III-IV T	otal Metal	s Exp	Aliquot #: 24-0	860-06-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Arsenic	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Barium	11		ug/L	5.0	10/22/2024	AB24-1022-06
Beryllium	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Boron	162		ug/L	20.0	10/22/2024	AB24-1022-06
Cadmium	ND		ug/L	0.2	10/22/2024	AB24-1022-06
Calcium	9360		ug/L	1000.0	10/22/2024	AB24-1022-06
Chromium	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Cobalt	ND		ug/L	6.0	10/22/2024	AB24-1022-06
Copper	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Iron	ND		ug/L	20.0	10/22/2024	AB24-1022-06
Lead	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Lithium	ND		ug/L	10.0	10/22/2024	AB24-1022-06
Magnesium	2220		ug/L	1000.0	10/22/2024	AB24-1022-06
Molybdenum	41		ug/L	5.0	10/22/2024	AB24-1022-06
Nickel	ND		ug/L	2.0	10/22/2024	AB24-1022-06
Potassium	1050		ug/L	100.0	10/22/2024	AB24-1022-06
Selenium	3		ug/L	1.0	10/22/2024	AB24-1022-06
Silver	ND		ug/L	0.2	10/22/2024	AB24-1022-06
Sodium	6130		ug/L	1000.0	10/22/2024	AB24-1022-06
Thallium	ND		ug/L	2.0	10/22/2024	AB24-1022-06
Vanadium	ND		ug/L	2.0	10/22/2024	AB24-1022-06
Zinc	ND		ug/L	10.0	10/22/2024	AB24-1022-06
Mercury by EPA 7470A, Total, Aqueous	5			Aliquot #: 24-0	860-06-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/22/2024	AB24-1022-04
Anions by EPA 300.0 CCR Rule Analyte	e List, CI, F	, SO4, Aqı	ueous	Aliquot #: 24-0	860-06-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	3080		ug/L	1000.0	10/18/2024	AB24-1017-01
Fluoride	ND		ug/L	1000.0	10/18/2024	AB24-1017-01
Sulfate	9470		ug/L	1000.0	10/18/2024	AB24-1017-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	860-06-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	60		mg/L	10.0	10/17/2024	AB24-1017-03
	0.	1 0960 Daga 1				

Report Date: 10/31/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0860

 Field Sample ID:
 PZ-40
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0860-06
 Collect Time:
 03:44 PM

Alkalinity by SM 2320B			Aliquot #: 24-0	860-06-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	33400	ug/L	10000.0	10/22/2024	AB24-1021-09
Alkalinity Bicarbonate	33400	ug/L	10000.0	10/22/2024	AB24-1021-09
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-09

10/31/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0860

 Field Sample ID:
 TW-19-05
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0860-07
 Collect Time:
 06:41 PM

Metals by EPA 6020B: CCR Rule Appe	ndix III-IV T	otal Metals	s Exp	Aliquot #: 24-0	860-07-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	1		ug/L	1.0	10/22/2024	AB24-1022-06
Arsenic	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Barium	74		ug/L	5.0	10/22/2024	AB24-1022-06
Beryllium	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Boron	156		ug/L	20.0	10/22/2024	AB24-1022-06
Cadmium	ND		ug/L	0.2	10/22/2024	AB24-1022-06
Calcium	52500		ug/L	1000.0	10/22/2024	AB24-1022-06
Chromium	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Cobalt	ND		ug/L	6.0	10/22/2024	AB24-1022-06
Copper	5		ug/L	1.0	10/22/2024	AB24-1022-06
Iron	ND		ug/L	20.0	10/22/2024	AB24-1022-06
Lead	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Lithium	24		ug/L	10.0	10/22/2024	AB24-1022-06
Magnesium	16200		ug/L	1000.0	10/22/2024	AB24-1022-06
Molybdenum	7		ug/L	5.0	10/22/2024	AB24-1022-06
Nickel	2		ug/L	2.0	10/22/2024	AB24-1022-06
Potassium	26200		ug/L	100.0	10/22/2024	AB24-1022-06
Selenium	23		ug/L	1.0	10/22/2024	AB24-1022-06
Silver	ND		ug/L	0.2	10/22/2024	AB24-1022-06
Sodium	1170		ug/L	1000.0	10/22/2024	AB24-1022-06
Thallium	ND		ug/L	2.0	10/22/2024	AB24-1022-06
Vanadium	ND		ug/L	2.0	10/22/2024	AB24-1022-06
Zinc	ND		ug/L	10.0	10/22/2024	AB24-1022-06
Mercury by EPA 7470A, Total, Aqueous	s			Aliquot #: 24-0	860-07-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/22/2024	AB24-1022-04
Anions by EPA 300.0 CCR Rule Analyti	e List, CI, F	, SO4, Aqu	ieous	Aliquot #: 24-0	860-07-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	1290		ug/L	1000.0	10/18/2024	AB24-1017-01
Fluoride	ND		ug/L	1000.0	10/18/2024	AB24-1017-01
Sulfate	11200		ug/L	1000.0	10/18/2024	AB24-1017-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	860-07-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	276	_	mg/L	10.0	10/17/2024	AB24-1017-03
	0	4 0960 Dago 1	7 of 27			

Report Date: 10/31/24

24-0860

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project:

 Field Sample ID:
 TW-19-05
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0860-07
 Collect Time:
 06:41 PM

Alkalinity by SM 2320B			Aliquot #: 24-0	860-07-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	220000	ug/L	10000.0	10/22/2024	AB24-1021-09
Alkalinity Bicarbonate	220000	ug/L	10000.0	10/22/2024	AB24-1021-09
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-09

10/31/24

Laboratory Services

A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0860

 Field Sample ID:
 TW-19-06A
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0860-08
 Collect Time:
 05:21 PM

Metals by EPA 6020B: CCR Rule Appe	ndix III-IV T	Total Metals	s Ехр	Aliquot #: 24-0	860-08-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Arsenic	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Barium	8		ug/L	5.0	10/22/2024	AB24-1022-06
Beryllium	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Boron	78		ug/L	20.0	10/22/2024	AB24-1022-06
Cadmium	ND		ug/L	0.2	10/22/2024	AB24-1022-06
Calcium	19400		ug/L	1000.0	10/22/2024	AB24-1022-06
Chromium	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Cobalt	ND		ug/L	6.0	10/22/2024	AB24-1022-06
Copper	2		ug/L	1.0	10/22/2024	AB24-1022-06
Iron	125		ug/L	20.0	10/22/2024	AB24-1022-06
Lead	ND		ug/L	1.0	10/22/2024	AB24-1022-06
Lithium	ND		ug/L	10.0	10/22/2024	AB24-1022-06
Magnesium	3180		ug/L	1000.0	10/22/2024	AB24-1022-06
Molybdenum	9		ug/L	5.0	10/22/2024	AB24-1022-06
Nickel	ND		ug/L	2.0	10/22/2024	AB24-1022-06
Potassium	1860		ug/L	100.0	10/22/2024	AB24-1022-06
Selenium	111		ug/L	1.0	10/22/2024	AB24-1022-06
Silver	ND		ug/L	0.2	10/22/2024	AB24-1022-06
Sodium	ND		ug/L	1000.0	10/22/2024	AB24-1022-06
Thallium	ND		ug/L	2.0	10/22/2024	AB24-1022-06
Vanadium	4		ug/L	2.0	10/22/2024	AB24-1022-06
Zinc	ND		ug/L	10.0	10/22/2024	AB24-1022-06
Mercury by EPA 7470A, Total, Aqueous	s			Aliquot #: 24-0	860-08-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	10/22/2024	AB24-1022-04
Anions by EPA 300.0 CCR Rule Analyte	e List, CI, F	F, SO4, Aqu	ieous	Aliquot #: 24-0	860-08-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	ND		ug/L	1000.0	10/18/2024	AB24-1017-01
Fluoride	ND		ug/L	1000.0	10/18/2024	AB24-1017-01
Sulfate	5880		ug/L	1000.0	10/18/2024	AB24-1017-01
Total Dissolved Solids by SM 2540C				Aliquot #: 24-0	860-08-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	82	_	mg/L	10.0	10/17/2024	AB24-1017-03
		4 0960 Dago 1				

Report Date: 10/31/24

Laboratory Services A CENTURY OF EXCELLENCE

JHC GW Monitoring - Supplemental Wells (395496) Sample Site: Laboratory Project:

24-0860 Collect Date: Field Sample ID: TW-19-06A 10/15/2024 24-0860-08 Collect Time: 05:21 PM

Matrix: Groundwater

Lab Sample ID:

Alkalinity by SM 2320B			Aliquot #: 24-0	860-08-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	63700	ug/L	10000.0	10/22/2024	AB24-1021-09
Alkalinity Bicarbonate	63700	ug/L	10000.0	10/22/2024	AB24-1021-09
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-09

10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0860

Field Sample ID: DUP-07 Collect Date: 10/15/2024 Lab Sample ID: 24-0860-09 Collect Time: 12:00 AM

Metals by EPA 6020B: CCR Rul	Aliquot #: 24-0860-09-C01-A01 Analyst		Analyst: EB		
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Antimony	ND	ug/L	1.0	10/22/2024	AB24-1022-06
Arsenic	ND	ug/L	1.0	10/22/2024	AB24-1022-06
Barium	ND	ug/L	5.0	10/22/2024	AB24-1022-06
Beryllium	ND	ug/L	1.0	10/22/2024	AB24-1022-06
Boron	24	ug/L	20.0	10/22/2024	AB24-1022-06
Cadmium	ND	ug/L	0.2	10/22/2024	AB24-1022-06
Calcium	5190	ug/L	1000.0	10/22/2024	AB24-1022-06
Chromium	ND	ug/L	1.0	10/22/2024	AB24-1022-06
Cobalt	ND	ug/L	6.0	10/22/2024	AB24-1022-06
Copper	ND	ug/L	1.0	10/22/2024	AB24-1022-06
Iron	49	ug/L	20.0	10/22/2024	AB24-1022-06
Lead	ND	ug/L	1.0	10/22/2024	AB24-1022-06
Lithium	ND	ug/L	10.0	10/22/2024	AB24-1022-06
Magnesium	1200	ug/L	1000.0	10/22/2024	AB24-1022-06
Molybdenum	ND	ug/L	5.0	10/22/2024	AB24-1022-06
Nickel	ND	ug/L	2.0	10/22/2024	AB24-1022-06
Potassium	770	ug/L	100.0	10/22/2024	AB24-1022-06
Selenium	ND	ug/L	1.0	10/22/2024	AB24-1022-06
Silver	ND	ug/L	0.2	10/22/2024	AB24-1022-06
Sodium	ND	ug/L	1000.0	10/22/2024	AB24-1022-06
Thallium	ND	ug/L	2.0	10/22/2024	AB24-1022-06
Vanadium	ND	ug/L	2.0	10/22/2024	AB24-1022-06
Zinc	ND	ug/L	10.0	10/22/2024	AB24-1022-06
Mercury by EPA 7470A, Total, Aqueous			Aliquot #: 24-0860-09-C01-A02		Analyst: CLE
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Mercury	ND	ug/L	0.2	10/22/2024	AB24-1022-04
Anions by EPA 300.0 CCR Rule Analyte List, Cl, F, SO4, Aqueous			Aliquot #: 24-0860-09-C02-A01		Analyst: KDR
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Chloride	ND	ug/L	1000.0	10/18/2024	AB24-1017-01
Fluoride	ND	ug/L	1000.0	10/18/2024	AB24-1017-01
Sulfate	2270	ug/L	1000.0	10/18/2024	AB24-1017-01
Total Dissolved Solids by SM 2	540C		Aliquot #: 24-0)860-09-C03-A01	Analyst: LMC
Parameter(s)	Result	Flag Units	•	Analysis Date	Tracking
Total Dissolved Solids	33	mg/L	10.0	10/17/2024	AB24-1017-03
		0960 Daga 21 of 27			

Analytical Report

Report Date: 10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0860

 Field Sample ID:
 DUP-07
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0860-09
 Collect Time:
 12:00 AM

Matrix: Groundwater

Alkalinity by SM 2320B			Aliquot #: 24-0	Analyst: DLS	
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Alkalinity Total	19700	ug/L	10000.0	10/22/2024	AB24-1021-09
Alkalinity Bicarbonate	19700	ug/L	10000.0	10/22/2024	AB24-1021-09
Alkalinity Carbonate	ND	ug/L	10000.0	10/22/2024	AB24-1021-09

Report Date:

10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0860

 Field Sample ID:
 TW-19-06A MS
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0860-10
 Collect Time:
 05:21 PM

Matrix: Groundwater

Metals by EPA 6020B: CCR Rule	e Appendix III-IV 10	itai ivietais	⊏xp	Aliquot #: 24-0	860-10-C01-A01	Analyst: El
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	95		%	1.0	10/22/2024	AB24-1022-06
Arsenic	101		%	1.0	10/22/2024	AB24-1022-06
Barium	100		%	5.0	10/22/2024	AB24-1022-06
Beryllium	99		%	1.0	10/22/2024	AB24-1022-06
Boron	105		%	20.0	10/22/2024	AB24-1022-06
Cadmium	98.7		%	0.2	10/22/2024	AB24-1022-06
Calcium	101		%	1000.0	10/22/2024	AB24-1022-06
Chromium	94		%	1.0	10/22/2024	AB24-1022-06
Cobalt	98		%	6.0	10/22/2024	AB24-1022-06
Copper	98		%	1.0	10/22/2024	AB24-1022-06
Iron	88		%	20.0	10/22/2024	AB24-1022-06
Lead	101		%	1.0	10/22/2024	AB24-1022-06
Lithium	100		%	10.0	10/22/2024	AB24-1022-06
Magnesium	103		%	1000.0	10/22/2024	AB24-1022-06
Molybdenum	103		%	5.0	10/22/2024	AB24-1022-06
Nickel	100		%	2.0	10/22/2024	AB24-1022-06
Potassium	99		%	100.0	10/22/2024	AB24-1022-06
Selenium	94		%	1.0	10/22/2024	AB24-1022-06
Silver	99.8		%	0.2	10/22/2024	AB24-1022-06
Sodium	104		%	1000.0	10/22/2024	AB24-1022-06
Thallium	103		%	2.0	10/22/2024	AB24-1022-06
Vanadium	99		%	2.0	10/22/2024	AB24-1022-06
Zinc	102		%	10.0	10/22/2024	AB24-1022-06
Mercury by EPA 7470A, Total, A	queous			Aliquot #: 24-0	860-10-C01-A02	Analyst: CLI
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	97.0		%	0.2	10/22/2024	AB24-1022-04
Anions by EPA 300.0 CCR Rule	Analyte List, CI, F,	SO4, Aqu	eous	Aliquot #: 24-0	860-10-C02-A01	Analyst: KDF
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	100		%	1000.0	10/18/2024	AB24-1017-0
Fluoride	98		%	1000.0	10/18/2024	AB24-1017-01

Report Date:

10/31/24

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: JHC GW Monitoring - Supplemental Wells (395496) Laboratory Project: 24-0860

 Field Sample ID:
 TW-19-06A MSD
 Collect Date:
 10/15/2024

 Lab Sample ID:
 24-0860-11
 Collect Time:
 05:21 PM

Matrix: Groundwater

Metals by EPA 6020B: CCR	Nuie Appendix III-IV 10	tai wetais E	×h	Aliquot #: 24-0	860-11-C01-A01	Analyst: EB
Parameter(s)	Result	Flag U	Jnits	RL	Analysis Date	Tracking
Antimony	99	%		1.0	10/22/2024	AB24-1022-06
Arsenic	102	%		1.0	10/22/2024	AB24-1022-06
Barium	103	%		5.0	10/22/2024	AB24-1022-06
Beryllium	101	%		1.0	10/22/2024	AB24-1022-06
Boron	114	%		20.0	10/22/2024	AB24-1022-06
Cadmium	101	%		0.2	10/22/2024	AB24-1022-06
Calcium	102	%		1000.0	10/22/2024	AB24-1022-06
Chromium	95	%		1.0	10/22/2024	AB24-1022-06
Cobalt	96	%		6.0	10/22/2024	AB24-1022-06
Copper	99	%		1.0	10/22/2024	AB24-1022-06
Iron	96	%		20.0	10/22/2024	AB24-1022-06
Lead	100	%		1.0	10/22/2024	AB24-1022-06
Lithium	100	%		10.0	10/22/2024	AB24-1022-06
Magnesium	111	%		1000.0	10/22/2024	AB24-1022-06
Molybdenum	108	%		5.0	10/22/2024	AB24-1022-06
Nickel	100	%		2.0	10/22/2024	AB24-1022-06
Potassium	102	%		100.0	10/22/2024	AB24-1022-06
Selenium	105	%		1.0	10/22/2024	AB24-1022-06
Silver	101	%		0.2	10/22/2024	AB24-1022-06
Sodium	109	%		1000.0	10/22/2024	AB24-1022-06
Thallium	104	%		2.0	10/22/2024	AB24-1022-06
Vanadium	100	%		2.0	10/22/2024	AB24-1022-06
Zinc	104	%		10.0	10/22/2024	AB24-1022-06
Mercury by EPA 7470A, Tot	al, Aqueous			Aliquot #: 24-0	860-11-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag U	Jnits	RL	Analysis Date	Tracking
Mercury	98.0	%		0.2	10/22/2023	AB24-1022-04
Anions by EPA 300.0 CCR I	Rule Analyte List, Cl, F,	SO4, Aqueo	us	Aliquot #: 24-0	860-11-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag U	Jnits	RL	Analysis Date	Tracking
Chloride	100	%		1000.0	10/18/2024	AB24-1017-01
Fluoride	99	%		1000.0	10/18/2024	AB24-1017-01
Sulfate	96	%		1000.0	10/18/2024	AB24-1017-01

Analytical Report

Report Date: 10/31/24

Data Qualifiers	Exception Summary
	No exceptions occurred.

CONSUMERS ENERGY

Chemistry Department

General Standard Operating Procedure

PROC CHEM-1.2.01 PAGE 1 OF 2 REVISION 5 ATTACHMENT A

	TITLE:	SAMPLE LOG-J	IN – SHIPMEN	NT INSPECTION FOR	RM
--	--------	--------------	--------------	-------------------	----

	0	Inspection	on Date: 10.15.24	Inspection By:	uno
Sample Origin/Project Name:	DITC Q	4-2024	Supplemental	Wells	
Shipment Delivered By: Enter	the type of	shipment carr	ier.		
Inter-Company Mail		FedEx	UPS	USPS _	
Tracking Number:			Other/Carry In (whom	n) KOR	
Shipping Containers: Enter th	ne type and n	umber of ship	pping containers received.		
Cooler	ardboard Bo	OX	Custom Case	Envelope/M	Iailer
Loose/Unpackaged Co	ntainers	•	Other		
Condition of Shipment: Enter	the as-recei	ved condition	of the shipment container.		
Damaged Shipment Ol	bserved: No	ne	Dented	_ Leak	ing
Other					
Shipment Security: Enter if a	ny of the shi	pping containe	ers were opened before rec	eipt.	
Shipping Containers R	eceived: Or	pened	Sealed	N/A	
	•				
I was agad I carry antas Linton th			agad with the chinmont		
	• •		•	O.V.	
Enclosed Documents: Enter the CoC Wor	• •		osed with the shipment. Air Data Sheet	Other	
	rk Request _		Air Data Sheet		
CoC Won	rk Request _ Measure the	temperature o	Air Data Sheet	s.	
CoC Won	rk Request _ Measure the ture Range_	temperature o	Air Data Sheet f several sample containers °C Samples Receive	s.	
CoC Won Temperature of Containers: A As-Received Tempera M&TE # and Expiration	rk Request	temperature o	Air Data Sheet f several sample containers °C Samples Receiv	s. ved on Ice: Yes 💌	
CoC Won Temperature of Containers: M As-Received Tempera M&TE # and Expiration Number and Type of Contain	rk Request	temperature o	Air Data Sheet f several sample containers °C Samples Receivated and sample containers rank tall number of sample containers	s. ved on Ice: Yes 💌 niners received.	No
CoC Won Temperature of Containers: M As-Received Tempera M&TE # and Expiration Number and Type of Contain Container Type	rk Request	temperature o	Air Data Sheet f several sample containers °C Samples Receivated a sample containers tal number of sample containers	s. ved on Ice: Yes <u>v</u> niners received. <u>Broken</u>	No
CoC Won Temperature of Containers: M As-Received Tempera M&TE # and Expiration Number and Type of Contain	rk Request	temperature o	Air Data Sheet f several sample containers °C Samples Receivated stal number of sample containers Other	s. ved on Ice: Yes 💌 niners received.	
CoC Won Temperature of Containers: M As-Received Tempera M&TE # and Expiration Number and Type of Contain Container Type VOA (40mL or f0mL)	rk Request	temperature o	Air Data Sheet f several sample containers °C Samples Receivated a sample containers tal number of sample containers	s. ved on Ice: Yes <u>v</u> niners received. <u>Broken</u>	No
CoC Won Temperature of Containers: M As-Received Tempera M&TE # and Expiration Number and Type of Contain Container Type VOA (40mL or 0mL) Quart/Liter (g/p)	rk Request	temperature o	Air Data Sheet f several sample containers °C Samples Receivated a sample containers tal number of sample containers	s. ved on Ice: Yes <u>v</u> niners received. <u>Broken</u>	No
CoC Won Temperature of Containers: M As-Received Tempera M&TE # and Expiration Number and Type of Contain Container Type VOA (40mL or 0mL) Quart/Liter (g / p) 9-oz (amber glass jar)	rk Request	temperature o	Air Data Sheet f several sample containers °C Samples Receivated a sample containers tal number of sample containers	s. ved on Ice: Yes <u>v</u> niners received. <u>Broken</u>	No
CoC Won Temperature of Containers: M As-Received Tempera M&TE # and Expiration Number and Type of Contain Container Type VOA (40mL or 0mL) Quart/Liter (g / p) 9-oz (amber glass jar) 2-oz (amber glass)	rk Request _ Measure the ture Range_ on ters: Enter t	temperature o	Air Data Sheet f several sample containers °C Samples Receivated a sample containers tal number of sample containers	s. ved on Ice: Yes <u>v</u> niners received. <u>Broken</u>	No
CoC Won Temperature of Containers: M As-Received Tempera M&TE # and Expiration Number and Type of Contain Container Type VOA (40mL or 00mL) Quart/Liter (g / p) 9-oz (amber glass jar) 2-oz (amber glass) 125 mL (plastic)	rk Request _ Measure the ture Range_ on ters: Enter t	temperature o	Air Data Sheet f several sample containers °C Samples Receivated and sample containers tal number of sample containers	s. ved on Ice: Yes <u>v</u> niners received. <u>Broken</u>	No

CHAIN OF CUSTODY

CONSUMERS ENERGY COMPANY – LABORATORY SERVICES

135 WEST TRAIL ST., JACKSON, MI 49201 • (517) 788-1251

1		0
Page	of	1

SAMPLING SITE / CUSTOMER: JHC Q4-2024 Supplemental Wells				PROJECT NUMBER:	SAP CC or WC	D#:						ANALYSIS REQUESTED								OA DEOLUDEMENIT.	
JHC	C Q4-2024 Sup	plemental Well	s		24-0860	REQUESTER:	Beth	any	Swa	nbe	rg		(Attach List if More Space is Needed)						QA REQUIREMENT:		
SAMI	PLING TEAM:	LDR, CL	E, LM	0	TURNAROUND TIME REQUIRED: □ 24 HR □ 48 HR □ 3 DAYS □ STA	ANDARD ⊠ OTH	HER _														□ NPDES ☑ TNI
SEN	D REPORT TO:	Joseph Firlit			email:	phone:													□ ISO 17025		
	COPY TO:	JR Register			MATRIX CODES: GW = Groundwater OX = Other			CC	DNT	AIN	ERS								tals		☐ 10 CFR 50 APP. B
		TRC			WW = Wastewater SL = Sludge W = Water / Aqueous Liquid A = Air				PRESERVATIVE		Metals			>	576	228	d Me	d Me	☐ INTERNAL INFO		
	LAB	SAMPLE COLL	LECTION	XIX	S = Soil / General Solid WP = Wipe O = Oil WT = Gene		AL#			-		_	1 Me	suc		Alkalinity	Radium 226	um 2	olve		□ OTHER
SA	AMPLE ID	DATE	TIME	MATRIX	FIELD SAMPLE ID / LOG	CATION	TOTAL	None	ONH	H ₂ SO ₄ NaOH HCI MeOH		MeOF	Total	Anions	TDS	Alka	Radi	Radium	Dissolved Metals		REMARKS
3	24-0860-01	10.15.24	1611	GW	MW-14S		8	4	4				x	x	x	x	x	x	x		
	-02	10.15.24	1217	GW	PZ-23S		8	4	4				x	x	x	x	x	x	x		
	-03	10.15.24	1708	GW	PZ-24S		8	4	4				x	x	x	x	x	x	x		
	-04	10.12.24	1844	GW	PZ-24		8	4	4				х	x	x	x	x	x	x		
	-05	10.15.24	1451	GW	PZ-40S		8	4	4				x	x	x	x	x	x	x		
	-06	10.15.24	1544	GW	PZ-40		8	4	4				x	x	x	x	x	x	x		
	-07	10.15.24	1841	GW	TW-19-05		7	4	3				x	x	x	x	x	x			
	-08	16.15.24	1721	GW	TW-19-06A		7	4	3				х	x	x	x	x	x			
	-09	10.15.24	_	GW	DUP-07		7	4	3				х	x	x	x	x	x			
	-10	10.15.24	1721	GW	TW-19-06A MS			1	1 1				x	x							
	-11	16.15.24	1721	GW	TW-19-06A MSD		2	1	1				x	x							
				DATE (TO CT.	ECEIVED BY:							CO	MME	NITC						
1	NQUISHED BY:		,	DATE/	0.24/1211	ECEIVED BY:	L	_								ce? D	₹ Yes	i □ i	No	M&T	E#:_ L\$077703
		SHED BY: DATE			24-	0860 Page 27 of 2	7						Ten	npera	ture:	1.2 -	3.4	•_°C		Cal. I	Due Date: 6-27-25

Well ID <u>JHC-MW-151023</u> Date <u>4.15.24</u> Control Number <u>24-0278-01</u>												
Location JHC Background Well Material: PVC SS Iron Galv. Steel												
Purge Method: Peristaltic Submersible Bladder Fultz Bailer												
Depth to Water Tape: Geofech S/N: 1009-ZZ												
QC SAMPLE: MS/MSD DUP Sonde ID:15M19H20M 21G22J												
Depth-to-water T/PVC (ft) 17.90 Depth-To-Bottom T/PVC (ft) 27.67 Completed by LMO												
рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity				
units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU				
+/- 0.1	NA					*	< 0.33	+/- 10%				
Starle	d provid				J	180	17.97					
1000			260	2.91	+207.3		•	3.25				
								3.69				
								5.14				
			31.5		+ 2184			5.05				
	11.1	103.7	29.0					496				
	10.9	115.3	27.3	_				3,99				
5.73	10.7	121.9	26.3	2.90 -	f 262.0		17.97	3,45				
5.80	10.9	132.8	25.9	2.86.	+ 258.9	180	17.97	3.10				
5.85	10.8	138.6	24.9	2.89	+ 258.9	180	17.97	3.14				
5.88	10.7	139.6	24.3	2.70	+156.9	180	17.97	2.71				
5.88	10.7	139.5	245	2.73	+ 254.2	180	17.97	2.61				
5.89	10.5	142.7	24.6	2.67	+ 255.4	180	17.97	2.78				
5.89	10.3	143.1	22.9	2.47	1 254.5	180	17.97	2.47				
5.90	10.3	143.4	22.7	2.46 -	+ 253.9	180	17.97	2.24				
Time (min):	70	Total Purge V	olume (gal) :	14.0		Review Date:	01212	04-24.24				
7	DOF, SI	mny, L	Wind			Review By:	17	<u></u>				
TOWN NAMES OF	2016	collec	ted 5	ample		V partie de la constante de la	V					
es Filled	Preservat	ive Codes:	A-NONE B-I	HNO3 C - H2SC	04 D - NaOH E	- HCl F						
Cinc	Tune	Preservative	Filtered V/N	Ouantitu	Cina	Tune	Preservative	Filtered Y/N				
				2			in the second se	riitered Y/N				
I L SWAI			17			11010						
125mL	1	A										
125mL 125mL 250mL 40mL	VOA	A A										
	d: V ter Tape: G ter T/PVC (ft) pH units +/-0.1 S-35 S. 80 S. 85 S. 80 S. 88 S. 88 S. 89 S. 89 S. 89 Sign Size	C 18ackground d: V Peristaltic ter Tape: G C O + C C C C C C C C C C C C C C C C C	d:	C Background Submersible	C Background Submersible Blacker Pvc	C Backgrown Well Material: Y PVC SS	C Backgroun Well Material:	C Backgroun Well Material: Y PVC SS Iron Galv. Steel				

	Aveil ID JHC-MW-15024 Date 4.15.24 Control Number 24-0278-02 Location JHC Background Well Material: PVC SS Iron Galv. Steel												
Purge Method		Peristaltic	Sul	bmersible	Pla	ddor	Fultz		or				
QC SAMPLE:	N	IS/MSD	DUP_		Sonde ID:	15M	19Н	20M <u>✓</u> 21G	22J				
Depth-to-wat	er T/PVC (ft)	13.66	Depth-To-B	ottom T/PVC	(ft) 19.92	_	Completed by	MO					
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity				
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU				
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10% on parameters f	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%				
1816	داء اه	A 01 3100 O	Stabilzatio	n parameters j	or the last tille	e reduings	180	13.68					
1814	Started	11. I	279.9	33.0	3.58	+195.1	180	13.67	4.84				
1819	7.54	9.5	294.7	18.3	2.10	+183.4	180	13.47	5.20				
1824	7.53	9.5	296.2	21.9	2.50	+180.0	180	13.67	3.77				
1829	7.53	9.4	286.3	22.9	2.43	+ 177.8	180	13.67	2.70				
1834	7.53	9.3	285.6	23.6	2.73	+ 175.5	180	13.67	2.10				
1839	7.51	9.4	286.4	23.3	2.67	+174.5	180	13.47	2.05				
1840					2 1	. 1 . 1 . 0							
1851	sample End	collect	<i>a</i> l										
1031	eng	3											
						*							
Total Pump T	ime (min):	30	Total Purge V	olume (gal) :	11.25		Review Date:	٥٠ /٢٠١	24				
Weather:	70' Sun	ny . Wina	lu				Review By:	X					
		,	. 1					0					
Comments:			10.000		A STATE OF A SHAPE								
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-	HNO3 C - H2S	O4 D - NaOH I	E-HCI F-						
		_	Preservative	mile			_	Preservative	mile 1 sets				
Quantity	Size 125 m L	Plashc	Code	Filtered Y/N	Quantity 2	Size	Plash (Code B	Filtered Y/N				
1	125 mL	143-16	B	T		1	1 145/16	J					
1	250 m L		n										
2	COML	VOA	Pr										
* Pump rate show		• • • •	nd <1 gal/min for i	high Volume.									

	· MW-150		Date' 4-15	-25		Control Numb	per 24-027	8.03 -10	-11
Location	HC Backa	frand	V	Vell Material:	PVC	SS	Iron	Galv. Steel	
Purge Metho	d:	Peristaltic	Sul	omersible	Bla	dder	Fultz	Bail	er
Depth to Wat	er Tape:	Geotec	h S/N	13-11					
QC SAMPLE:	IV.	IS/MSD	DUP_		Sonde ID:	<u>√</u> 15M	19Н	_20M21G	22J
Depth-to-wat	er T/PVC (ft)	13.19_	Depth-To-Bo	ottom T/PVC	(ft) <u>19.90</u>	_	Completed by	cle	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
				on parameters f	or the last thre	e readings		0 -	
1755	Starte	-d punt	2				180	13.23	
1800	7.84	9.6	Sol	22.7	2.60	+256.8	180	13.23	1.64
1805	7.88	9.5	438	34.7	3.96	+244.3	180	13.23	1.67
1810	7-90	9.3	425	37.0	4.24	+ 241.4	180	13.23	1.48
1815	7-90	9.3	424	37.1	4.25	+ 239.8	180	13.23	1.63
1820	7.91	9.3	422	37.3	4.27	+237.9	180	13.23	1.62
18200"	041524	ted sav	0/1 10 / 0/1			-	. 00		1.02
		-CN 900V	11005						
1833	end								
						3			
Total Pump T			Total Purge V	olume (gal) :	21,25		Review Date:	04-24	-24
Weather:	7	0°F, 91	unny				Review By:	1.	
			,					Λ	
Comments:		collec	ted Fi	ELD M	(2/W?D			V	*
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-	HNO3 C-H2S	O4 D - NaOH I	E-HCIF-		
			Preservative					Preservative	
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
3	125ml	HDIPE	B	N	2	1-L	HDPE	В	N
3	12SML		A						
2	250ML	VOA	A						
	UOML uld be <500 mL/m		nd <1 gal/min for l	niah Volume					
	////	, = , 1011 UII							

Well ID JHC-mw-15026 Date 4.15.25 Control Number 24-0278.84, -07 Location JHC Background Well Material: PVC SS Iron Galv. Steel											
Purge Method: Peristaltic Submersible Bladder Fultz Bailer											
Depth to Water Tape: Geotech S/N: 7371											
QC SAMPLE: MS/MSD DUP6 Sonde ID:15M19H20M21G22J											
Depth-to-wat	er T/PVC (ft)	15.18	Depth-To-B	ottom T/PVC (ft) 21.02	_	Completed by	/			
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity		
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU		
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%		
				on parameters f	or the last three	e reaaings					
1553	Star	ted pu	1.50			0	200	15.20	5		
1400	4.00	167	35.5	60.2	6.69	+170.8	200	15,20	5.49		
1405	5.90	10.7	34.7	59.5	6.41	+217.8	200	15.20	4.08		
1410	5.87	10,5	34.8	59.8	6.48	+258.5	200	15,20	3.72		
1615	5.85	10.5	34,4	62.0	4.92	+ 285.2	200	15,20	3.20		
1620	5.84	10.5	34.2	62.8	7.01	+ 301.9	206	15,20	3.62		
1425	5.87	10.4	34.8	59.7	6.68	+321.9	200	15,20	2.87		
1630	5.86	10.4	34.3	60.5		+325.6	200	15,20	2.79		
1635	5.81	10.4	33.3	63.9		+334.3	200	15.20	2.73		
1440	5,81	10,4	33.4	.63.5	7.10	+342.7	200	15,26	7.74		
1645	5,83	10,5	34.1	63.2	7,05	+348,2	200	15,20	2.76		
1450	5,84	10.4	34,4	6118		+ 350,0		15,20	2.73		
1651		ted Sa			0 11						
1715	V2 2 10		MPQ								
	en	3									
Total Pump T	ime (min):	58	Total Purge V	olume (gal) :	22D		Review Date:	04-24.	24		
Weather:				oranic (gar) .	· 5,0		Review By:	gu.	A9		
Weather.	10	of Sunny					Neview by.				
Comments:		COLL	ected	FIELD	TNI P			V			
	NEW STREET	THE RESTRICT		are a series							
Bottle	s Filled	Preservat	ive Codes: Preservative	A - NONE B - I	HNO3 C - H2S0	O4 D - NaOH E	- HCl F	Preservative			
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N		
2	125mL	HDPE	В	N	Ч	1-L	HDPE	В	7		
2	125mL		A								
2	250mL	1	A								
,4	Leame	plastic	A	↓							
* Pump rate sho	uld be <500 mL/m	nin for low-flow an	d <1 gal/min for	high Volume.							

Well ID JHC MW-15027 Date 415.13 Control Number 24-0278-05									
Location 11	c Backgr	ound	٧	Well Material:	PVC	SS	Iron	Galv. Steel	
Purge Metho	d: 🗸	Peristaltic	Sul	bmersible	Bla	dder	Fultz	Bail	er
Depth to Wat	er Tape: G	cotech	S/N	: 1009-2	-2				
QC SAMPLE:	N	IS/MSD	DUP_		Sonde ID:	15M	19Н	_20M <u>~</u> 21G	22J
Depth-to-wat	er T/PVC (ft)	15.80	Depth-To-B	ottom T/PVC	(ft) 23.00		Completed by	umo	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
		•		on parameters f	or the last thre	e reaaings	Δ =	41	
1601	Started	1 Pumpi	ng				80	15.81	
1608	Turne	d spea	ed up	to 100			100	15.82	
1613	6.64	12.3	70.7	94.3	10.17	+ 213.4	100	15.82	25.04
1418	· 6.13	11.5	79.0	93.7	10.24	+ 228.8	160	15.80	16.70
1623	6.17	11.4	82.2	93.3	10.17	+ 232.9	100	15.80	17.00
1628	6.21	11.2	86.3	92.1	10.10	+ 232.7	100	15.80	14.92
1633	6.22	11.1	87.6	92.3	10.15	+ 234.1	100	15.80	12.18
1038	6.23	11.4	88.7	92.4	10.09	+ 235.2	100	15.80	12.82
1643	6.27	11.2	93.1	91.0	10.02	+ 236.9	100	15.80	10.79
1648	6.29	11.1	93.1	91.0	9.99	+ 234.2	100	15.80	11.27
1649	Turned	speed		80				15.84	
1456	6.37	10.4	97.0	87.9	9.83	+235.8	180	15.85	10.86
1707	6.42	16.4	98.7	86.9	9.74	+235.8	180	15.85	10.77
1704	6.42	10.3	103.4	B7.0	9.74	+233.9	180	15.85	11.52
1711	4.4Le	10.4	103.1	85.9	9.44	+ 233.1	180	15.85	11.44
Total Pump T	ime (min):	-	Total Purge V	olume (gal) :	_		Review Date:	04-24-	4
Weather:	70 ° 50	nny, wu	ndy				Review By:	V	
								Y	
Comments:							张显然实现		
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-I	HNO3 C - H2S	O4 D - NaOH E	- HCl F		
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
1	125 mL	Plasne	A	N	2	1-6	Plashe	В	N
1	125mL		В	T			-		
ı	250 mL	7	A						
1 2	lanl	VADO		3	I				

* Pump rate should be <500 mL/min for low-flow and <1 gal/min for high Volume.

	ell ID JHC-MW-15027 Date 4.15-23 Control Number 24-0278-05											
Location	JHC Back	ground	V	Vell Material:	✓ PVC	SS	Iron	Galv. Steel				
Purge Method	d: 🗸	Peristaltic	Sul	omersible		dder	Fultz	Bail	er			
Depth to Wat	er Tape: 🛭 🥑	160 sech	S/N	1009-22	2							
QC SAMPLE:	IV	IS/MSD	DUP_		Sonde ID:	15M	19Н	20M <u>~</u> 21G	22J			
Depth-to-wat	er T/PVC (ft)	15.00	Depth-To-Bo	ottom T/PVC (ft) 23.00	_	Completed by	LNO				
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity			
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU			
3-5 min	+/- 0.1	NA	+/- 3% Stablizatio	+/- 10% on parameters f	+/- 0.3ppm or the last three	+/- 10mV e readings	*	< 0.33	+/- 10%			
1714	6.48	10.3	105.1	86.8	9.73	+233.2	180	15.85	10.48			
1721	6.51	10.3	108.0	84.9	9.51	+235.3	180	15.85	9.88			
1726	4.50	10.5	167.3	85.8	9.57	1235.3	180	15.85	9.39			
1731 6.50 10.6 107.3 86.4 9.61 +235.3 180 15.85 9.29												
1732												
1745 Ena												
				,								
			a a									
Total Pump T	ime (min):	31	Total Purge V	olume (gal) :	~4	la superior de la constante de	Review Date:	94.24.	24			
Weather:		•					Review By:					
								Ø				
Comments:												
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-F	HNO3 C - H2SC	D4 D-NaOH E	- HCl F					
		_	Preservative	mile laste			_	Preservative	mile trade:			
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N			
* Pump rate sho	uld be <500 ml /m	nin for low-flow as	nd <1 gal/min for I	niah Volume								
- Francisco		, ,		J								

Well ID <u>111C MW-15208</u> Date <u>4.15.24</u>

Consumers Energy Company Monitoring Well Sampling Worksheet

Control Number 24 - 0218 - 04

ocation 114C Background Well Material: PVC SS Iron Galv. Steel												
Purge Method	urge Method: Peristaltic Submersible Bladder Fultz Bailer											
Depth to Wat	er Tape: 💪	eotech	S/N	: 1009-2	.2							
QC SAMPLE:	N	ns/msd	DUP_		Sonde ID:	15M	19H	_20M <u></u>	22J			
Depth-to-wat	er T/PVC (ft)	16.76	Depth-To-B	ottom T/PVC	(ft) <u>20.82</u>		Completed b	vcle/lma)			
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity			
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft				
3-5 min	+/- 0.1	NA	+/- 3% Stablizatio	+/- 10% on parameters f	+/- 0.3ppm or the last thre	+/- 10mV e readings	т	< 0.33	+/- 10%			
1432	Started	lump					226	16.91				
1435	-	dpump :	sound to	180			180	17.38				
1439	117	pump		700			120	17.79				
1432		l pump					80	14.85				
1453	8.41	12.8	102.5	77.7	8.24	+135.1	80	16.85	3.70			
1458	8.48	12.4	101.9	77.0	8.24	+140. S	80	16.93	3.87			
1503	8.44	12.0	100.5	18.0	8.31	+147.1	80	16.70	3.67			
1508	8.45	124	100.8	77.5	8.23	1147.0	80	14.70	3.44			
1513	8.49	12.7	101.7	77.6	8.25	+ 148.4	80	16.70	3.49			
700	-	,			0.03	7190.9	00	(0.70	5.71			
1514		ed sam	PIZ									
1540	Gnd											
Total Pump T		12		olume (gal) :	~1		Review Date:		-24			
Weather:	76.4 50	SUNY MI	ndy				Review By:		-			
								0				
Comments:			V3000000						10 N 19 10 10 10 10 10 10 10 10 10 10 10 10 10			
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-	HNO3 C - H2S	04 D - NaOH I	- HCl F -					
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N			
l	125 mL	Plashs	A	N_	2	1-1	Plashe	B	N			
i	125ml		В	7					-			
	250 mL	7	P									
* Pump rate show	(00 m L	VOR nin for low-flow an	A gal/min for	high Volume								
r ump rute shot	and DE SOUTHL/II	mi joi iow-jiow un	ia 1 gui/iiiii jui	ngn volume.								

Well ID F ?	5-01		Date <u>4.15.24</u> Control Number <u>24 - 6278 - 0</u> 9						
Location <u></u>	Ite Backay	round	V	Vell Material:	PVC	SS	Iron	Galv. Steel	
Purge Metho	d:	Peristaltic	Sul	bmersible	Blac	dder	Fultz	Bail	er
Depth to Wat	er Tape:		S/N	:					
QC SAMPLE:	N	/IS/MSD	DUP_		Sonde ID:	15M	19Н	20M21G	22J
Depth-to-wat	er T/PVC (ft)		Depth-To-Bo	ottom T/PVC	(ft)	_	Completed by	LMO	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
				on parameters f	or the last three	e readings			
2010	collecte	d Sam	pla						
*						36			
	,								
Total Pump T	ime (min):		Total Purge V	olume (gal) :		•	Review Date:	٥५-24.	24
Weather:							Review By:	A.	
								0	
Comments:									
Rottle	s Filled	Drocorust	ive Codes:	A-NONE B	HNO3 C-H2SC	N D-NaOH	- HCL E		2010/2010/2019
bottle	3 rineu	Preservat	Preservative	A-INOINE B-	11403 C-1123C	D- NAOH I	nci r	Preservative	
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
<u> </u>	125mL	Plashe	A	P					
<u> </u>	125mL		B						
	250 mL		A						
2	1-L	7	B						
* Pump rate sho	uld be <500 mL/m	in for low-flow ar	nd <1 gal/min for l	nigh Volume.					

Well ID To	5-0		Date 4.15.29 Control Number 24-0278-09							
	c Backgr	ound	V	Vell Material:	PVC	SS	Iron	Galv. Steel		
Purge Method	d:	Peristaltic	Sul	omersible	Blac	dder	Fultz	Baile	er	
Depth to Wat	er Tape:		S/N							
QC SAMPLE:	N	IS/MSD	DUP_		Sonde ID:	15M	19Н	20M21G	22J	
Depth-to-wat	er T/PVC (ft) _		Depth-To-Bo	ottom T/PVC (ft)	_	Completed by	LMO		
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity	
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU	
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%	
				n parameters f	or the last three	e readings				
2025	collect	ed Sar	nple							
			3							
							,			
Total Pump T	ime (min):	-	Total Purge V	olume (gal) :	_		Review Date:	94-24-2	પ	
Weather:							Review By:	7.		
								Y		
Comments:								1		
Bottle	Bottles Filled Preservative Codes: A - NONE B - HNO3 C - H2SO4 D - NaOH E - HCl F									
200	olio agri	55.00	Preservative			CPVS		Preservative		
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N	
l l	125ml	Plasme	A	7						
	125 mb		13							
	1-L		P							
2 * Dump rate show		in for low flow		righ Volume						
Pump rate shot	ии ве <500 mL/m	ırı for low-flow ar	nd <1 gal/min for l	iign voiume.						

	ell ID JHC-mw-15006 Date 4.16.24 Control Number 24-0279-01									
ل _ Location	HC FOND	• A_	V	Vell Material:	PVC	SS	Iron	Galv. Steel		
Purge Method	d:	Peristaltic	Sul	omersible	Blac	dder	Fultz	Bail	er	
Depth to Wat	er Tape: 60	oTech	S/N	: 7371						
QC SAMPLE:	N	IS/MSD	DUP_		Sonde ID:	15M	19Н	_20M21G	22J	
Depth-to-wat	er T/PVC (ft) ₋	35.10	Depth-To-Bo	ottom T/PVC	(ft) <u>38.00</u>	_	Completed by	/ CIE		
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity	
min <i>3-5 min</i>	units +/- 0.1	°C NA	uS/cm +/- 3%	% sat. +/- 10%	ppm +/- 0.3ppm	mV +/- 10mV	mL/min	Drawdown ft	NTU +/- 10%	
				on parameters f						
1655	Start	ed pun	20	A			306	35.12		
1705	7.99	14.8	590	9.1	0.92	+100.6	300	35,12	1.89	
1710	7.97	14.9	589	16.4	1.05	+96.9	300	35,12	1.90	
1715	7.90	14.9	589	10.9		+87.7	300	35,12	1.56	
1720	7.94	15.0	588	12.0		72.0	300	35.12	1.25	
1725	7.95	14.9	588	10.6		t 70.3	300	35.12	1.23	
1730	7.96	15.0	588	10.4		4 49.2	300	35.12	1.19	
1735	7.97	14.8	589	10.8		+68.8	300	35.12	1.23	
1734	Colle	cted Sa	mule							
1743	end		.,,, .,							
					25					
	П									
Total Pump T	ime (min):	34	Total Purge V	olume (gal) :	22.75		Review Date:	04-24	(. 24	
Weather:		9°F 50	יח, יעייח				Review By:			
		,						8		
Comments:								•		
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-I	HNO3 C-H2S	O4 D - NaOH I	E-HCI F			
			Preservative					Preservative	mile 1 a day	
Quantity	Size 125mL	Type HDPE	Code B	Filtered Y/N	Quantity 2	Size	Type HDPE	Code	Filtered Y/N	
' ,	125ML	TIPEL	4	IV I			11012	U	1//	
1	250mL	1	17							
2	LeomL	UNA	A	₩.						
Pump rate sho	uld be <500 mL/m	nin for low-flow ar	nd <1 gal/min for i	high Volume.						

Well ID JHC-MW-15007R Date 4-16-24 Control Number 24-0279-02, -09, -150											
Location	IHC Por	DA	V	Vell Material:	PVC	SS	Iron	Galv. Steel			
Purge Method	d:	Peristaltic	Sul	omersible	Blac	dder	Fultz	Bail	er		
Depth to Wat	er Tape: 💪	cotect	s/N	: 7371		***************************************					
QC SAMPLE:	✓ N	IS/MSD	DUP_		Sonde ID:	<u>~</u> 15M	19Н	_20M21G	22J		
Depth-to-wat	er T/PVC (ft) ₋	36.09	Depth-To-Bo	ottom T/PVC	(ft) <u>43.10</u>)	Completed by	LIE			
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity		
min 3-5 min	units +/- 0.1	°C NA	uS/cm +/- 3%	% sat. +/- 10%	ppm +/- 0.3ppm	mV +/- 10mV	mL/min	Drawdown ft	NTU +/- 10%		
	.,			on parameters f				10,00	., 10,0		
1555	star.	ted pu	we				325	34.10			
1605	7.99	15.6	574	11.7	1.18	1174.0	325	36.10	22.30		
1610	7.96	14.8	548	17.0	1.72	+110,3	325	36.10	12.18		
1615	1615 7.97 14.8 545 17.8 1.80 +93.8 325 36.10 7.99										
1420											
1625	8.01	14,7	545	17.9	1.81	+ 69.3	325	36.10	3.24		
1430	8.02	14.6	545	18,2	1.85	+66.2	325	36.10	2.42		
1435	8.03	14.6	546	18.0	1.83	U3.2	325	36.10	2.11		
1440	8.03	14.7	547	17.9	1.81	41.0	325	36.10	2.09		
1441		uted so	Mal	-		4 ()					
1650	en]		.,,,								
	0.1.										
Total Pump T	ime (min):	41	Total Purge V	olume (gal) 🖍	3.5		Review Date:	K.			
Weather:	700	sun.	windy			*	Review By:	04.	24-24		
2.0		,						,			
Comments:		Colle	cted F	FIELD A	US/MSD						
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-I	HNO3 C - H2SO	O4 D - NaOH E	- HCl F-				
			Preservative					Preservative			
Quantity 2	Size	Type	Code	Filtered Y/N	Quantity 2	Size	Type	Code	Filtered Y/N		
3	125mL 125mL	HDPE	B	N		1-L	HOPE	В	<i>N</i>		
1	250mL	1	A								
2	Leome	VOA	A	1							
* Pump rate shou	uld be <500 mL/m	in for low-flow ar	d <1 gal/min for i	high Volume.							

Well ID 11-10-MW-1500&R Date 4.16.24 Control Number 24.6279.03 Location 11-10-MW-1500&R Well Material: PVC SS Iron Galv. Steel											
Location _3	19 C FOIT	<u> </u>	v	ven materiai.	PVC	55		Galv. Steel			
Purge Metho	d:	Peristaltic	Sul	omersible		dder	Fultz	Bail	er		
Depth to Wat	er Tape: 6	leotect	s/N	: 737	(***************************************				
QC SAMPLE:	l N	/IS/MSD	DUP_		Sonde ID:	15M	19Н	20M21G	22J		
Depth-to-wat	er T/PVC (ft)	43.05	Depth-To-Bo	ottom T/PVC	(ft) <u>47.44</u>	_	Completed by	CLE			
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity		
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU		
3-5 min	+/- 0.1	NA	+/- 3% Stablizatio	+/- 10% on parameters f	+/- 0.3ppm or the last three	+/- 10mV e readings	*	< 0.33	+/- 10%		
1505	Star	ted pu	me.				316	43.10			
1510	7.25	15.1	554	14.2	1.42	+229.7	310	43.10	6.92		
1515 7.24 15,1 553 14,9 1.50 +219.8 310 43.10 3.73											
1520 7.23 15.0 548 18.2 1.83 +205.6 310 43.10 2.05											
1525											
1530	7.22	14.8	539	21.0	2.12	+ 199.8	310	43.10	1.68		
1535	7.22	14.8	539	20.3	2.05	4197.5	310	43.10	1.53		
1540	7.22	14.8	541	20.0	2.01	+194.4	310	43,10	1.55		
1541	collect	ted sam	pie				90 ×	•			
1549	enp	>					Ł				
			,				и				
Tatal Duna 7	· · · · · · · · · · · · · · · · · · ·	131	Tatal Dunas V	-1 (1)	0.75		Davieus Dates	٥५,24	24		
Total Pump T Weather:		46 apt 5	Total Purge V		13,75		Review Date: Review By:	Α	- 24		
Weather.		1,	our, u	2117124			neview by.	- X -	7		
Comments:								V			
Bottle	es Filled	Preservat	ive Codes:	A-NONE B-	HNO3 C - H2S0	O4 D-NaOH E	- HCl F				
			Preservative					Preservative	File I v for		
Quantity	Size 125mL	Type I-IDPE	Code	Filtered Y/N	Quantity 2	Size 2. L	Type	Code B	Filtered Y/N		
Í	125mL	1	Ä	1		4	11016	٦	'\		
1	250mL	1	A								
<u>ν</u>	UDML	VOA	nd <1 gal/min for i	niah Volume							

Well ID JAC-MW-15009 R Date 4・16・24 Control Number 24・0279-64、- の										
Location _	H C POND	A	V	Vell Material:	₽ PVC	SS	Iron	Galv. Steel		
Purge Method	d:	Peristaltic	Sul	omersible	Bla	dder	Fultz	Bail	er	
Depth to Wat	er Tape: 🛭 🤾	cotech	S/N	: 7371						
QC SAMPLE:	IV	IS/MSD	DUP	02	Sonde ID:	<u></u> 15M	19Н	20M21G	22J	
Depth-to-wat	er T/PVC (ft)	43.24	Depth-To-Bo	ottom T/PVC	(ft) 50.80	<u>></u>	Completed by	cle		
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity	
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU	
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10% on parameters f	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%	
1220	c L = c			ni parameters j	or the last three	e reduings	2	112 20		
1335	Star		imp	10.2	120		300	43.25	7.20	
1340	4.83	14.3	569	13.2		+230.4	300	43.25	7.38	
1346	6.63	14.2	Sleg	15.6		+226.9	300	43.25	5.70	
1350										
1355	6-84									
1400	4.84	14.1	569	20.5	2.10	4225.4	300	43,25	2.91	
1405	4.84	14,2	569	21.2	2.17	+226.8	300	43,25	2.68	
1410	4.86	14.1	569	22.1	2.26	+230.0	300	43,25	2.15	
1415	V.85	14.0	570	22.3	2.29	+236.7	300	43.25	1.90	
1420	4.85	14.1	571	22.5	2.31	+231.2	300	43.25	1.94	
1421	Colle	olld sa	mple							
1430	end								, i	
ii										
				H					<u>E</u>	
Total Pump T	ime (min):	44	Total Purge V	olume (gal) :	~3.75		Review Date:	٠٠٠ ٢٠٠	24	
Weather:		180F. 5	un, wi	NDV			Review By:	*		
		,	,	1				Y		
Comments:			Collected	FILLD	DUP					
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-I	HNO3 C-H2S	O4 D-NaOH I	E - HCl F			
0	61==	-	Preservative	Eiltored V/N	0	61	-	Preservative	Filtowed V/N	
Quantity 2	Size 125mL	Type HDPE	Code	Filtered Y/N	Quantity L [Size	Type H DPE	Code	Filtered Y/N	
2	125mL	1	A	1		1 6	HOFE	Ь	N	
2	250mL	1	Ä							
* Rump rate show	Uam.	VOA	A	high Volume						
rump rate shot	uld be <500 mL/m	ılıı jur luw-flow ar	iu <1 gui/min jor i	ngn volume.						

	ID JHC-MW-15011R Date 4.16.24 Control Number 24-6279.05 Ition JHC POND A Well Material: PVC SS Iron Galv. Steel								
							_		
Purge Method	d:	Peristaltic	Sul	omersible	Blac	dder	Fultz	Bail	er
Depth to Wat	er Tape: (aeotect	s/N	: 7371					
QC SAMPLE:	l N	1S/MSD	DUP_		Sonde ID:	<u>~</u> 15M	19Н	_20M21G	22J
Depth-to-wat	er T/PVC (ft)	37.57	Depth-To-Bo	ottom T/PVC ((ft) <u>45.20</u>	2	Completed by	CIE	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
			Stablizatio	on parameters f	or the last thre	e readings			
1825	Star	ted pu	mp				310	37.58	
1830	7.03	14.2	456.6	7.6	0.78	+143.9	310	37.58	9.17
1835	6.99	14,1	450.1	9.3	0.94	444.7	310	37.58	5.50
1840	6.98	14.0	449.0	10,1	1.04	4143.2	310	37.58	3.3)
1845	7.00	14,0	441.1	9.7	1,00	+138.9	310	37.58	2.42
1850	4.97	14.0	437.4	9,6	0.99	+138.7	310	37.58	1.75
1855	6.90	14,0	435.5	9.5	0.98	+132.6	310	37.58	1.69
1856	colle	cted Su	mple						
1108	en								
	V1.								
Total Pump T	ime (min):	30	Total Purge V	olume (gal) :	~3,0		Review Date:	و٧-24.	LY
Weather:	450F		wind				Review By:	0	1
			7					1	
Comments:								V	
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-I	HNO3 C - H2S	O4 D-NaOH I	- HCL F-		
2000			Preservative					Preservative	
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
1	125ML	HDPE	B	N	2	1-L	HDPE	В	N
	125ML		A						
2	250mL	√	A	1					
	uld be <500 mL/m	NOA	nd <1 gal/min for	•				L	
Tump rate silo	DE \500 IIIL/II	joi love jiove ui	guijiiiii jui i	gii voidine.					

Well ID	FB-62	FB-62 Date 4-14-24 Control Number 24-0279-67							
Location 🚜	C Pond A		V	Vell Material:	PVC	SS	Iron	Galv. Steel	
Purge Method	d:	Peristaltic	Sul	omersible	Blac	lder	Fultz	Baile	er
Depth to Wat	er Tape:		S/N	:					
QC SAMPLE:	N	IS/MSD	DUP_		Sonde ID:	15M	19Н	_20M21G	22J
Depth-to-wat	er T/PVC (ft)		Depth-To-B	ottom T/PVC	(ft)	_	Completed by	/ C/E	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
				on parameters f	or the last three	readings			
1921	Collec	ted Sam	pie						
								- 14 2	
Total Pump T	ime (min):		Total Purge V	olume (gal) :			Review Date:	٥٢٠ ك	4-24
Weather:							Review By:		
Comments:								1	
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-I	HNO3 C-H2SC	04 D - NaOH E	- HCl F		
			Preservative					Preservative	
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
1	12SML	HDPE	В	N					
\	125 mL		A	_					
2	250mL	-	A B	1					
* Pump rate show		in for low-flow a		high Volume					
L ampiate silot	20 100 1111/111	joi love jiove ui	gui/mini jui i	g.i , Jiuilie.					

Well ID	ID EB -62								
Location <u>ル</u>	tc Pond	A	V	Vell Material:	PVC	SS	Iron	Galv. Steel	
Purge Metho	d:	Peristaltic	Sul	omersible	Blac	dder	Fultz	Bail	er
Depth to Wat	er Tape:		S/N	:					
QC SAMPLE:	N	IS/MSD	DUP_		Sonde ID:	15M	19Н	_20M21G	22J
Depth-to-wat	er T/PVC (ft)		Depth-To-Bo	ottom T/PVC ((ft)	_	Completed by	CLE	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
			Stablizatio	on parameters f	or the last three	e readings			
1929	collecte	d Sam	uple						
· ·									
2									
						_			
								×	
Total Pump T	ime (min):		Total Purge V	olume (gal) :			Review Date:	. 04~3	L4-24
Weather:				(0 /			Review By:	9.	
v cutilei.							neview by.		
Come								V	
Comments:							沙兰 罗克·哈克·		
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-I	HNO3 C-H2SC	04 D - NaOH I	- HCl F-		
			Preservative					Preservative	
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
<u>.</u>	125mc	HDPE	B	N					
1	125 mL		A						
1	250 mL		A						
2	10-1	4	В	Ψ.					
* Pump rate sho	uld be <500 mL/m	in for low-flow ar	nd <1 gal/min for l	nigh Volume.					

Well ID NW-145 Date 4.16.24 Control Number 24-6281-01												
Location	SHC		٧	Vell Material:	PVC	SS	Iron	Galv. Steel				
Purge Method	J.	Peristaltic	Cut Su	omersible	Place	ldor	Fultz	Poil	o.,			
		(2)				dder	Fult2	Bail	er			
Depth to Wat	er Tape: 🔀	slinst 10)(Y / S/N	: 65030	623							
QC SAMPLE:	N	ns/msd	DUP_		Sonde ID:	15M	19H	20M21G	<u>✓</u> 22J			
Depth-to-wat	er T/PVC (ft) ₋	11.05	Depth-To-B	ottom T/PVC ((ft) 13.29		Completed by	KDR				
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity			
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU			
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%			
11:30	Stack	ed pun	Pump 252 11.14									
11:35	6.18	11.1	49.9	45.0	4.87	1007	252	11.14	7.20			
11:39	5.99	10.5	47.8	34.1	3.80	109.7	252	11.15	2.81			
11:43	5.98	16.4	47.2		3.88	115.4	252	11.15	2.74			
11:47	5.10											
11:51	5.97	10.4										
			47.5			116.9	252		2.65			
11:55	5.97	10.7		35.9	3.99	116.8	252	11.15	2.51			
11:59	5.97	10.5	47.9	35.6	3.97	117. [252	11.15	2.49			
13:00		ted sam										
17:08	FNG S	sample of	to liecti	on								
	5											
								-				
Total Pump T		30	Total Purge V	olume (gal) :	≈ J.0		Review Date:	04-24-8	۲4			
Weather:	30°F	Sunnyl	mirgh				Review By:	7				
C								U				
Comments:					SERVICE SERVIC				7 - 44 Paka			
Bottle	Bottles Filled Preservative Codes: A - NONE B - HNO3 C - H2SO4 D - NaOH E - HCl F											
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N			
1	125 ML	HDPE	B	γ	2	60ml	HOV	A	N			
l l	125 ml		B	Ŋ	2	16	HDPE	В	N			
1	125ml 250ml	1	Λ	7								
* Pump rate show		nin for low-flow ar	nd <1 gal/min for	•	L							

	vell ID Y 2 - 235 Date 4.17.29 Control Number 29-0281-02 ocation Stron Galv. Steel										
Location	2110		·	ven material.	- PVC			Galv. Steel			
Purge Method	d:	Peristaltic	Sul	omersible	Blac	dder	Fultz	Bail	er		
Depth to Wat	er Tape: S	olinst	101 P7 S/N	: 65030	623						
QC SAMPLE:	N	ns/msd [DUP_		Sonde ID:	15M	19Н	_20M21G	<u>✓</u> 22J		
Depth-to-wat	er T/PVC (ft)	15.10	Depth-To-Bo	ottom T/PVC	(ft) 17.50)	Completed by	KDR			
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity		
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU		
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%		
13:07	starte	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		on parameters f	or the last three	e reaaings	256	15.18			
13:11	7.49	6 pump 10.7	36.6	84.9	9.43	-5.9	256	15.19	9.41		
13:15	7.18	10.5	34.3	83.6	9.33	31.3	256	15.19	4.17		
13:19	7.08	10.5	33.5	83.6	9.33	417.34 S	256	15.19	4.09		
13:23	7.02	16.4	34.0	83.5	9.33	4.17.34 5 51.5	256	15.19	4.02		
13:27	7.01	10.5	33.1	83.9	9.36	56.0	256	15.19	3.95		
13:31	6.99	10.7	34.5	84.2	9.35	62,5	256	15.19	3.96		
13:35	7.00	10.6	34.2	84.4	9.38	65. l	256	15.19	3.89		
13:39	6.99	10.5	34.0	84.0	9.36	69.3	256	15.19	3.71		
13:40	-	ted so		0 1.0	1,30	01. 7	V-3 Oc	*3164	J. / L		
13:55		sample (10							
()	ENG.		5110011								
Total Pump T	ime (min): 3	3	Total Purge V	olume (gal) : '	≈7 <i>(</i>)		Review Date:	٥५,३५,	2-Y		
Weather:		cloudy,					Review By:				
							·	Y			
Comments:						ri		, v			
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-I	HNO3 C - H2SO	D4 D - NaOH I	- HCl F-				
			Preservative					Preservative			
Quantity	Size	HDPE	Code	Filtered Y/N	Quantity	Size	Type VoA	Code	Filtered Y/N		
,	125ml	101 1	B	N	2	60mL	HDPE	B	2		
(125mL		A	þ	-	, -					
* Pump rate cha	250ml	nin for low-flow an	A and min facility	Notine Volume							
I rump rute snot	aid DE \JUU IIIL/III	iii joi low-jiow an	u - 1 gui/IIIII joi i	ngn volullie.							

Well ID	vell ID P 7 - 245 Date 4.16.24 Control Number 24-0281-03,-09											
Location	ZHC	_	٧	Well Material:	PVC	SS	Iron	Galv. Steel	,			
Purge Method		Peristaltic	Cul	bmersible	Place	dder	Fultz	Bail	0.5			
"		4				idei	Fult2	Ddii	ei			
Depth to Wat	er Tape: Sc	shast 1	0(P7 s/N	: LS030	623		on the second of the second of the second of					
QC SAMPLE:	N	/IS/MSD	✓ DUP_(<u> </u>	Sonde ID:	15M	19H	_20M21G	<u></u>			
Depth-to-wat	er T/PVC (ft)	7.81	Depth-To-Bo	ottom T/PVC	(ft) 11.09	_	Completed by	KDR				
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity			
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU			
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10% on parameters f	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%			
19:10	SLO	_\		on parameters j	or the last three	e reaaings	272	7.89				
19:15		ed pum		Q1 /.	9.32	75/			3.72			
	5.55	9.4	79.5	81.6		75.6	272	7.89				
19:19	5.11	9.4	35.0	73.8	8.45	103.6	272	7.99	3.18			
19:23	5,09	9.1	38.8	68.3	7.85	111.9	272	7.89	3.22			
19:27	5.67	9.1	43.3	62.8	7. 22	122.0	272	7.89	2.99			
19:31	5.06	9.0	45.0	60.5	7.00	125.5	272	7.89	2.67			
19:35	5.05	9.1	46.4	58.8	6.78	129.7	272	7.89	2.59			
19:39	5.06	9.1	47.2	57.4	6.62	133.5	272	7.89	2.45			
19:43	5.06	8.9	47.7	56.5	6.55	135.4	272	7.89	2.34			
19:47	5.08	8.9	48.1	55.8	6.47	137.5	272	7.89	2.32			
19:48	Collec	ted sou	nple	TI TI								
20:21	End	scemple	collecti	on								
,				•								
Total Pump Ti	me (min):	38	Total Purge V	olume (gal) :	≈3.0		Review Date:	04.24-	24			
Weather:	55°F,C	loudy, wi	rdy				Review By:	A.				
"												
Comments:								<i>V</i>				
Bottles	Filled	Preservat	ive Codes:	A-NONE B-I	HNO3 C-H2SC	04 D - NaOH E	- HCl F					
Overatite.	C!	Tomas	Preservative	Eiltored V/N	0	6!	-	Preservative	Eiltored V/N			
Quantity	Size 125mL	HDPE	Code	Filtered Y/N	Quantity U	66mL	VOA	Code	Filtered Y/N			
Ż	125ml		B	Ń	4	1 L	HDPE	B	V			
à	125mL		Ä	N	,		, -	-				
* Dumm rate of	250ml	in for low fi	A	N high Valuma								
Pump rate shou	ua pe <500 mL/m	in for low-flow an	ia <1 gal/min for l	nign volume.								

Well ID PZ	Vell ID <u> </u>								
Location	SHC		V	Vell Material:	PVC	SS	Iron	Galv. Steel	
Purge Method	d:	Peristaltic	Sub	omersible	Blac	dder	Fultz	Bail	er
Depth to Wat	er Tape: So	linst 10	1 PZ S/N	LS030	623				
QC SAMPLE:	N	is/msd [DUP_		Sonde ID:	15M	19Н	20M21G	✓ 22J
Depth-to-wat	er T/PVC (ft)	5.24	Depth-To-Bo	ottom T/PVC	(ft) 13.8(_	Completed by	KDR	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3% Stablizatio	+/- 10% on parameters f	+/- 0.3ppm or the last three	+/- 10mV e readings	*	< 0.33	+/- 10%
16:57	Starte	g brimb					180	5.95	
17:05	7.61	10.4	306.6	28.2	3.02	-174.9		# 82	57.33
17:09	8.03	9.8	312.3	4.2	0.46	-280.7	180	7.15	44,28
17:13	8.06	9.8	324.0	2.2	0.25	-285. 1	180	7.25	38.91
17:14	Emptyed			meg bra	np speed		140	7.20	
17:18	7.68	10.5	343.1	17.2	1.83	-217.9	140	7.09	17.83
17:22	7.72	16.4	350.2	3.6	0.39	-210.0	140	7.00	12.77
17:26	7.62	10.4	353.9	2.2	0.24	-192.4	140	6.91	9.03
17:30	7.59	10.4	354.8	1.8	0.20	-186.2	140	4.90	7.83
17:34	7.53	10.4	355.8	1.4	0.16	-176.0	140	6.90	6.30
17:38	7.49	10.4	357.4	1.2	0.14	-169.6	140	6.90	5.87
17:42	7.48	10.2	357.7	1.0	0.11	-166.0	140	6.90	5.34
17:46	7.44	10.3	358.1	6.8	0.09	-159.7	140	6.90	5.13
17:50	7.42	10.2	358.0	0.8	6.08	-155,5	140	6.90	4.84
17:54	7.41	10.3		0.8	0.08	-153.0	140	6.90	4.79
Total Pump Ti	ime (min): 5	8	Total Purge V	olume (gal) :	≈2.0		Review Date:	o4-	24-24
Weather:	60°F,5	unny, Wi	ndy		traine and the second		Review By:	9	<u> </u>
Comments:				sample	18:	33 Eng	sample	collect	TION
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-I	HNO3 C - H2S0	D4 D-NaOH I	E-HCLF-		
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
1	125mL	HDPE	B	У	2	60 mL	VOA	A	h .
(125ml		B	N	2	16	HDPE	B	N
,	125ml 250ml		A	2					
* Dump rate show		in for low flow an	nd <1 gal/min for l	N.C.		J		1	

	cation Date Date Date Control Number										
Location			· ·	ven material.				Galv. Steel			
Purge Method	d:	Peristaltic	Sul	omersible	Blac	dder	Fultz	Bail	er		
Depth to Wat	er Tape: Sc	olinst 10	1 P7 s/N	: LS036(623						
QC SAMPLE:	l N	ns/MSD	DUP_		Sonde ID:	15M	19Н	_20M21G	<u>~</u> 22J		
Depth-to-wate	er T/PVC (ft)	10.89	Depth-To-Bo	ottom T/PVC	(ft) 17.98		Completed by	KDR	p.		
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity		
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU		
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%		
14151				on parameters f	or the last three	e readings	200	1			
10:31		of born			A 11		788	10.92	4151		
10:34	5.30	10.6	30.6	73.5	8.11	178.8	288	10.92	4.21		
10:38	5.11	10.4	29.7	60.9	6.81	135.5	288	10.92	3.88		
10:42	5.10	16.	29.8	58.0	6.53	141.3	288	10.92	3.59		
10:46	5.12	10.1	29.6	57.5	6.45	145.5	288	10.92	3.30		
10:50	5.12	10.2	29.7	55.7	6.27	147.7	288	10.92	3.35		
10:54	5.11	10.1	29.2	53.7	6.04	149.6	288	10.92	3.27		
10:58		10.3	29.1	52.8	5.91	151.3	788	10.92	3.19		
11:02		10.1	28.9	51.9	5.88	152.2	288	10.92	3.15		
11:03		ted sav	-		3,00				J. 10		
11:19	End		collect	ian							
11.11	2112	santpi s	Wite st	1017							
Total Pump Ti			Total Purge V		≈ 2.5		Review Date:	1 .	-2-4		
Weather:	600F1	SUNNY, 1	ight win	19			Review By:	7			
								0			
Comments:			in South and				ASS T. C. (2)				
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-I	HNO3 C-H2SC	04 D - NaOH I	- HCl F				
Ouantitus	Cino	Tunc	Preservative Code	Filtered Y/N	Ourant!t	Ci-c	Tomas	Preservative Code	Eiltorad V/N		
Quantity	Size 125ml	HDPE	B	y	Quantity	Size	VOA	Code	Filtered Y/N		
1	125mL	T	B	N	à	IL	HDPE	B	N		
l	125mL		A	N,			•	_			
1	250ml	+	A	N							
↑ Pump rate shou	ıld be <500 mL/m	un for low-flow an	d <1 gal/min for l	nigh Volume.							

ell ID $\frac{72-90}{5.11}$ Date $\frac{9.17.24}{5.11}$ Control Number $\frac{29-5281-66}{5.11}$										
3 HC		V	Vell Material:	PVC	SS	Iron	Galv. Steel			
					lder	Fultz	Bail	er		
er Tape: 30	linst 10	177 s/N	: 65030	<u>623</u>	,					
IV.	1S/MSD	DUP_		Sonde ID:	15M	19H	_20M21G	<u></u>		
er T/PVC (ft) ₋	8.04	Depth-To-Bo	ottom T/PVC	(ft) <u> </u>		Completed by	V KOR			
рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity		
units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU		
+/- 0.1	NA .					*	< 0.33	+/- 10%		
starte	d pum	P		,		264	8.09			
6.59	10.2	120.4	26.5	2.91	102.0	764	8.09	3.47		
6.63	10.0	129.1	5.9	0.66	103.0	264	8.09	3.38		
6.65	9.9	131.4	3.7	0.42	103.8	264	8.09	3.19		
6.66	9.9	131.9	2.8	0.32	104.0	264	8.09	3.15		
6.66	9.9	132.2	2.4	0.27	104.6	264	8.09	3.07		
6.66	10.0	132.3	2.3	0.26	105, 4	264	8.09	3.08		
le.66	10.0	132.4	2.2	0.25	106.2	264	8.09	3.01		
Collect	ed san	rple								
		2	ÞΚ							
	,									
ime (min):	78	Total Purge V	olume (gal) :	~ 2.0		Review Date:	04-20	t-24		
50°F, C	loudy, li	aht wir	19			Review By:	A.	•		
•		J					1			
s Filled	Preservat	ive Codes:	A-NONE B-I	HNO3 C-H2SC	04 D - NaOH E	- HCl F				
Cina	Time	Preservative	Filtered V/N	Ourant!t	Ci	т	Preservative	Eiltored V/N		
			y					Filtered Y/N		
125mL		B	'n	Ž	1 L	HDPE	B	N		
		A	þ					b		
	in for low-flow an	d <1 gal/min for h								
	er Tape: So er Tape: So pH units +/-0.1 starto 6.59 6.65 6.66 6.66 6.66 6.66 6.66 6.66	SHC d: Peristaltic er Tape: Solinst 10 Ms/MsD er T/PVC (ft) 8.04 pH Temp units °C +/-0.1 NA Started pum 6.59 10.2 6.63 10.0 6.65 9.9 6.66 9.9 6.66 9.9 6.66 9.9 6.66 10.0 Collected Sam End Sample stilled Preservat Size Type 125 mL 125 mL	SHC d: Peristaltic Sulfer Tape: Solinst 101 P7 S/N MS/MSD DUP_ er T/PVC (ft) B.OY Depth-To-Bo pH Temp Sp Cond units °C US/cm +/-0.1 NA +/-3% Stablization Started Pump 6.59 10.2 120.4 6.65 9.9 131.4 6.66 9.9 131.9 6.66 9.9 131.9 6.66 9.9 132.2 6.66 10.0 132.3 6.66 10.0 132.3 6.66 10.0 132.3 6.66 10.0 132.4 Collected Sample End Sample collection stilled Preservative Codes: Size Type Code 125 mL HDPE B 125 mL A A A A	SHC Submersible Suble Submersible Submer	## Peristaltic Submersible Black Black	## Peristaltic Submersible Bladder Bladd	## Peristaltic	SHC Well Material: PVC SS Iron Galv. Steel G		

	rell ID TW-19-05 Date 4.16:24 Control Number 24:0281-07 Docation JHC 50PPI emental Well Material: PVC SS Iron Galv. Steel										
Location	AL SUPPL	emental	V	Vell Material:	✓ PVC	SS	Iron	Galv. Steel			
Purge Method	d: J	Peristaltic	Sub	omersible	Blac	dder	Fultz	Bail	er		
Depth to Wat	er Tape: 6	cokeh	S/N	1009	22						
QC SAMPLE:	M	IS/MSD [DUP_		Sonde ID:	15M	19Н	_20M 🗸21G	22J		
Depth-to-wat	er T/PVC (ft) _	15.68	Depth-To-Bo	ottom T/PVC	(ft) į 8.55	_	Completed by	_ Lmo_			
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity		
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU		
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%		
144			Stabilzatio	n parameters f	or the last three	e reaaings	240	1570			
143	started	pump					240	15.78			
1618	Slowed		to 27		¥		220	15.78			
1625	7.09	11.2	90.le	80.8	8.91	+126.5	220	15.78	1.73		
1630	7.03	10.6	94.2	79.4	8.83	+119.0	220	15.78	1.56		
1635	2.04	10.6	98.5	79.3	8-80	+ 124.3	220	15.78	1.48		
1446	7.04	10.9	104.6	78.3	8.64	+ 130.1	220	15.78	1.53		
1645	7.05	10.9	107.4	780	8.63	+ 144.7	120	15.78	153		
1650	7.05	10.6	119.7	75.1	8.34	+141.3	270	15.78	1.69		
1455	7.05	16.5	138.8	69.2	7.71	+ 176.9	220	15.78	1.55		
1700	7.04	10.4	161.3	44.9	7.24	+ 180.9	220	1578	1.62		
1705	7.05	10.5	171.1	42.4	7.0Ce	+ 184.2	220	15.78	2.03		
1710	7.08	10.4	185.9	40.4	6.74	+ 187.3	220	15.78	1.62		
1715	7.09	10.4	189.3	59.2	6.60	+ 190.5	220	15.78	1.51		
1720	7.14	10.4	196.8	57.7	4.44		220	15.78	1.44		
1725	77.14	10.4	197.9	57.7		+191.9	220	15.78	1.39		
	ime (min): 18		Total Purge V				Review Date:				
Weather:	70.5		windy	eranne (Bar) r	1.0		Review By:		(64		
2			COCOLOR					- /			
Comments:								V			
Bottle	s Filled	Preservati	ve Codes:	A-NONE B-I	HNO3 C - H2SO	04 D-NaOH E	- HCl F-				
			Preservative					Preservative			
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N		
	125 ml	R	Dlagni	7	<u></u>	1-6	Plashe	В	1)		
1	125 ml	B									
2	250ml 60ml	B									
	uld be <500 mL/mi		d <1 gal/min for h	nigh Volume.							

	cation JHC Supplemental Well Material: V PVC SS Iron Galv. Steel										
Purge Metho	d:	Peristaltic	Su	bmersible	Blac	dder	Fultz	Bail	er		
Depth to Wat	er Tape:	eden.	s/N	1009	22						
QC SAMPLE:	N	ns/msd [DUP_		Sonde ID:	15M	19Н	20M 🖊 21G	22J		
Depth-to-wat	er T/PVC (ft)	15-68	Depth-To-B	ottom T/PVC	(ft) 18-55		Completed by	umo			
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity		
min <i>3-5 min</i>	units +/- 0.1	°C NA	uS/cm +/- 3%	% sat. +/- 10%	ppm +/- 0.3ppm	mV +/- 10mV	mL/min	Drawdown ft	NTU +/- 10%		
				on parameters f							
1730	7.17	10.4	200.9	57.4	6.42	192.4	220	15.78	1.40		
1731	collecte	d sampl	R								
1751	Gnd										
								Ē			
Total Pump T	ime (min): 🧻	8	Total Purge V	olume (gal) :	~ U O		Review Date:	04-24.	<u> </u>		
Weather:		unny, w		- (0)	7.7.		Review By:				
		, ,	7					ď			
Comments:											
Rottle	s Filled	Preservati	ive Codes	A-NONE B-I	INO3 C-H3SC	04 D - NaOU 1	- HCL F-	Joseph St.			
Quantity	Size	Type	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N		
& Sec	page on						,,				
	,	,									
* Pump rate sho	 uld be <500 mL/m	nin for low-flow an	d <1 gal/min for l	high Volume.	L						
					Andrew Company of the Company	A CONTRACTOR OF A CO		The second second			

Well ID <u>TW</u> Location <u>JI</u>			Date <u>4-10</u>	e · 24 Vell Material:	PVC		oer <u>24 -02</u> Iron	81 -08 , - 1 Galv. Steel	0,-11
Purge Method	d:	Peristaltic	Sul	bmersible	Blad	dder	Fultz	Bail	er
Depth to Wat	er Tape: ઉ	ottch	S/N	:1009-2	2				
QC SAMPLE:	✓ N	IS/MSD	DUP_		Sonde ID:	15M	19H	_20M <u> </u>	22J
Depth-to-wat	er T/PVC (ft)	12.53	Depth-To-Bo	ottom T/PVC	(ft) 15.31		Completed by	V Une	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10% on parameters f	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
m 1829	Started	ann P	Stubilzatio	ni parameters j	or the last tille	reduings	26.	12	*
1839	8.84	10.9	24.01	7.1	~ 0.1	W 2 1	220	12.54	. 63
			263.1		0.84	+147.7	220	12.59	1.53
18 44	8.87	10.7	259.4	5.3	0.57	+138.4	220	12.54	1.27
18 49	8.89	10.7	258.7	4. a	0.51	1130.8	220	12.54	1.37
1854	8.88	10.9	257.4	11.4	1.22	122.4	220	12.54	1.48
1859	8.89	10.8	254.0	4.7	0.52	+116.6	220	12.54	1.43
1904	8.89	10.6	259.8	4.4	0.49	r 113.3	220	12.54	1.44
1909	8.89	10.11	258.6	4.2	0.44	+ 106.3	220	12.54	1.41
1914	8.90	10.7	257.3	4.0	0.45	+ 102.1	220	12.54	1.53
1919	8.90	10.7	258.1	4.0	0.44	+ 97.2	220	12.54	1.42
1924	8.90	10.4	258.7	3.9	0.44	+ 92.4	220	12-54	1. 40
1929	8.90	10.7	258.9	3.9	0.44	+88,7	220	12.54	1-80
1934	- uno Hile.								
1930	collecte	d Same	14						
2037	End								
Total Pump T		lel	Total Purge V	olume (gal) :	~3,5		Review Date:	04-24-2	4
Weather:	6		orndy	(0)	,.		Review By:	, .	
Section and the section of the secti		•	•				•	X	
Comments:	* repaire	d kink,	n Woung					V	
Bottle	s Filled	Preserva	tive Codes:	A-NONE B-	HNO3 C-H2S	O4 D - NaOH	E-HCI F		
Ouantitus	Sinc	Tuna	Preservative			200		Preservative Code	Filtered Y/N
Quantity 3	Size	*Iasmc	Code	Filtered Y/N	Quantity	Size	Plash (B	Filtered Y/N
3	125ml		0	Ť	34	1 6		D	
l	250mL	سل	A			(4	L.	
2	(mc	VOM	P	- 1					

	C- MW-15 14C Backg		Date <u>VO.14.24</u> Control Number <u>24-0857-01</u> , <u>6.14.24</u> Well Material: PVC SS Iron Galv. Steel							
Purge Metho	d: 🗸	Peristaltic	Su	bmersible	Bla	dder	Fultz	Bail	er	
Depth to Wat	ter Tape: 60	otech	S/N	:1005						
QC SAMPLE:		MS/MSD	✓ DUP_	01	Sonde ID:	<u>√</u> 15M	19Н	_20M21G	22J	
Depth-to-wat	ter T/PVC (ft)	20.02	Depth-To-B	ottom T/PVC	(ft) <u>27·71</u>		Completed by	y mo		
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity	
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU	
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%	
11.10			Stablizati	on parameters f	or the last thre	e readings				
1610	starkd	PUMP	010	0.2	0.88	+107 7	220	20.02	200	
1615	6.20	12.2	81.3	8.2		+222.7	220	20.02	3,04	
1420	6.24	12.1	95.4	7.0	0.75	+221.0	220	20.02	2.91	
1625	6.37	12.0	106.0	5.9	0.64	1212.3	220	20.02	2.37	
1630	6.39	12.0	111.8	6.2	0.67	+210.0	220	20.02	2.18	
1435	4.43	12.0	122.4	w.0	0.45	+ 205.6	220	20.02	1.92	
1640	6.44	12.2	123.9	4.1	0.65	+202.4	220	20.02	1.74	
1445	6.49	12.1	132.2	5.8	0.43	+196.6	220	20.02	1.75	
1450	6.49	12.1	129.9	5.9	0.63	+196.0	220	20.02	1.68	
1655	4.50	12.1	134.9	6.0	0.64	+ 195.4	220	20.02	1.69	
1760	4.51	12.1	134.0	5.9	0.62	+194.6	220	20.02	1.67	
1705	4.51	12.1	134.5	(e. 0	0.65	+194.8	220	20.02	1.64	
1704	7 794	d sample								
1731	End					!				
Total Pump T	ime (min):	5 le	Total Purge V	olume (gal) :	~3.25		Review Date:	10-23-2	ч	
Weather:		loudy					Review By:	0	٠	
								1		
Comments:								V		
Bottle	es Filled	Preservat	ive Codes:	A-NONE B-I	HNO3 C-H2S	O4 D - NaOH E	- HCl F-			
			Preservative					Preservative	Cara and	
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N	
	14.24 mt	Plastic	-A	14	4	14	Plastic	B	N	
2	125mL		B	77	4	(Omi	VOA		10	
2	125mL	1	A	N						
		nin for low-flow an	nd <1 gal/min for							

	C-MW-15 HC Back		Date 10.14	<u>ન . અ</u> Vell Material:	Control Number <u>V4 - 0857 - 02</u> II: V PVC SS Iron Galv. Steel				
Purge Metho		Peristaltic	Sub	omersible	Bla	dder	Fultz	Baile	er
Depth to Wa	ter Tape: 6e	otech	S/N:	1005					
QC SAMPLE:		/IS/MSD	DUP_	_	Sonde ID:	<u>√</u> 15M	19Н	_20M21G	22J
Depth-to-wa	ter T/PVC (ft)	15.45	Depth-To-Bo	ottom T/PVC (ft) <u>19.94</u>		Completed by	LMO	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
			Stablizatio	n parameters fo	or the last thre	e readings			
1800	started			-,	100000000000000000000000000000000000000		220	15.46	
1805	7.92	12.2	341.4	5.6	0.60	+ 230.1	220	15.46	3.09
1810	1.88	12.3	316.4	5.7	0.61	+215.0	220	15.44	3.25
1815	7.88	12.2	329.1	5.4	0.58	+209.0	220	15.46	3.13
1820	7.89	12.2	331.1	5.2	6.SLe	+200.7	220	15.44	2.97
1825	7.90	12.1	337.0	4.8	0.52	+ 192.4	220	15.44	2.48
1830	7.90	12.1	328.9	4.9	0.53	+ 188.1	220	15.46	2.24
1835	7.90	12.1	332.4	5.2	0.56	+ 184.2	220	15.46	2.02
1840	7.90	12.1	330.5	5.5	0.59	+181.9	220	15.44	1.97
1845	7.90	12.1	330.1	5.9	0.63	+ 179.4	220	15.44	1.87
1850	7.90	12.1	329.9	5.9	0.64	+178.7	220	15.44	18.1
1855	7.90	12.1	328.3	6.1	0.67	+178.4	220	15.46	1.79
1856	collecte		10						
1908	End	Jamp							
Total Dumn 7	ime (min): τ	5/0	Total Purge V	olume (gal) :	~3.15		Review Date:	20.	,
			Total Fulge v	olume (gai) .	3. 63		Review By:		-23-24
Weather:	55. Clou	dy					Review by.	4 10	
Comments:		W 44 5							
Bottle	es Filled	Preserva	tive Codes:	A-NONE B-H	HNO3 C-H2S	O4 D - NaOH I	E - HCl F		
Ouantitus	Cinc	Tune	Preservative Code	Filtered Y/N	Quantitu	Size	Tuno	Preservative Code	Filtered Y/N
Quantity	Size	Plashe	-A	N umo 18145	Quantity 4 2	\ L	Plasmo	B	N
1	125mL	1 1	A	N ma leite	2	come	VOA	A	10
	125mL		В	N		QUINT			
i	250 ML		A	N					
* Pump rate sho		nin for low-flow a	nd <1 gal/min for I						

	c-mw-15		Date <u>10.14.</u> 5	면 Vell Material:	✓ PVC		per <u>24 - 0 8</u> Iron	Galv. Steel	3-11
Purge Metho	d:	Peristaltic	Sul	omersible	Bla	dder	Fultz	Bail	er
Depth to Wa	ter Tape: 6	eotech	S/N	1005					
QC SAMPLE:	✓ I	MS/MSD	DUP_		Sonde ID:	<u></u>	19Н	_20M21G	22J
Depth-to-wat	ter T/PVC (ft)	14.93	Depth-To-B	ottom T/PVC ((ft) <u>19.89</u>	_	Completed b	y uno	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
			Stablizatio	on parameters f	or the last thre	e readings	Al-		
1935	Started	pump					240	14.97	
1940	7.95	11.5	464.3	26.3	2.86	+127.3	240	14.97	3.28
1945	7.96	11.5	439.1	24.5	2.89	+139.9	240	14.97	2.89
1950	7.97	11.4	431.3	28.1	3.07	+153.3	240	14.97	2.71
1955	7.97	11.4	431.9	28.6	3.12	+155.0	240	14.97	2.72
2000	1.98	11.3	420.2	29.2	3.20	+156.5	240	14.97	2.65
2005	7.98	11.3	420.6	29.8	3.21	+157.2	240	14.97	2.59
2010	7.99	11.3	419.9	30.0	3.29	+155.0	240	14.97	2-58
2011	collect	ed sampi							
2024	Gnd								
2000mo		1							
Total Rump T	ime (min): 1	, u	Total Burgo V	olume (gal) :			Review Date:	10.23.	2 4
Weather:			Total Fulge v	olullie (gai) .	~1.3		Review By:	0.	-
weather.	56. F clo	ody					neview by.	X	
Comments:	*	m				70 10		U	
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-H	HNO3 C-H2S	O4 D - NaOH I	- HCl F		
0	CI	T	Preservative Code	Filtored V/N	0	Class	-	Preservative	Eiltored V/N
Quantity	Size	Plastic	B	Filtered Y/N	Quantity	Size	Plasne	Code	Filtered Y/N
3	125ml	Plashe	A	N	-	10	rayer	1.7	IU
1	250 ML	Plastic	A	N					
r	COML	VOA	A	N					
* Pump rate sho		min for low-flow ar							

	1c-mw-1		Date 10.15	.24		Control Numb	per 24-08	57-04	
Location	HC Back	eground	,	Well Material:	✓ PVC	SS	Iron	Galv. Steel	
Purge Metho	od:	Peristaltic	Su	bmersible	Bla	dder	Fultz	Bail	er
Depth to Wa	ter Tape: 6	cotech	S/N	: 1005					
QC SAMPLE:		/IS/MSD	DUP		Sonde ID:	<u>√</u> 15M	119H20M21G22J		
Depth-to-wa	ter T/PVC (ft)	16:77	Depth-To-B	ottom T/PVC	(ft) 21.02		Completed b	_\mo_	
Time	На	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10% on parameters f	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
-0		/	Stabilzati	on parameters j	or the last thre	e reaaings	220	16.78	
0815	Started		7111	1770		50740740		110.77	W-954
0820	5.89	11.9	44.6	40.0	4.32	+288.9	220	16.78	2.53
0825	5.87	11.9	45.3	38.5	4.15	+296.1	220	16.78	2.62
0830	5.91	12.0	47.4	37.4	4.05	+301.3	220	14.78	2.55
0835	5.88	12.0	46.3	37.6	4.06	+306.0	220	16.78	2.56
0846	5.88	11.9	46.6	37. U	4.66	+309.9	220	16.78	2.47
6 845	5.88	12.0	46.4	37.7	4.05	+ 313.2	220	16.78	2.31
0850	5.87	11.9	46.6	37.6	4.06	+ 315. I	220	16.78	2.22
0855	5.87	11.9	46.6	37.4	4.05	+316.2	220	16.78	2.25
0854			100	51.0	250 20 20	1 3(4 4		10 10	
0911	collected	Sample							
Total Pump	 	41	Total Purge V	olume (gal) :	~ 2.25		Review Date:	10-23.2	.4
Weather:	50 F CL0	ody					Review By:	0.	
Comments:								,	
Bottl	es Filled	Preserva	Preservative	A-NONE B-	HINOS C-HZS	O4 D - NaOH I	E-HCI F	Preservative	
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
2	60 mL	VOA	A	7	2	11	Plashe	В	7
1	125ml	Plastic	A	N		,			
- 1	125mc		В	N					
	250 mL ould be <500 mL/n	1	B	N					

	MW-1502		Date <u>(0.15.</u>	Well Material:	✓ PVC	Control Numb	ber <u>24 - 085</u> Iron	Galv. Steel		
Purge Method: Peristaltic			Su	ubmersible	Bladder Fultz Bailer					
Depth to Wat	ter Tape: Geo	otech	S/N	N: 1005						
QC SAMPLE: MS/MSD			DUP_	7 7 4 7 7	Sonde ID:	<u>✓</u> 15M	19H	_20M21G	à22J	
Depth-to-wat	ter T/PVC (ft)	17.41	Depth-To-B	Bottom T/PVC ((ft) <u>23.80</u>		Completed b	y Lmo		
Time	pH	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity	
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU	
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%	
			Stablization	ion parameters fo	or the last thre	e readings		1		
0930	started	pump						17.43		
0935	7.00	12.5	173.8	83.4	8.87	+301.2	240.0	17.43	29.54	
0934	Stopped	l sondy f	ixed an	r bubbles						
0945	started	pump					220	17.43		
0950	7.22	12.5	150.1	81.2	8.68	+ 286.0	220	17.43	9.94	
0955	7.27	12.4	154.3	82.3	8.79	+283.3	220	17.43	10.32	
1000	7.27	12.4	155.8	80.8	8.61	+ 282.2	220	17.43	7.53	
1005	7.36	12.5	153.1	80.3	8.54	+280.6	220	17.43	4.72	
1010	7.32	12.5	152.3	79.8	8.50	+ 280.7	220	17.43	4.01	
1015	7.34	12.5	153.2	79.8	8.42	+280.0	220	17.43	3.25	
1020	7. 35	12.5	154.1	78.6	8.38	+ 279.8	220	17.43	2.94	
1025	7.35	12.4	154.9	18.5	8.31	+ 280.0	270	17.43	2.89	
10 30	7.36	12.5	154.4	18.3	8.34	+ 280.0	220	17.43	2.90	
1031	conected				0	7 000		11.13	2	
1147	End	Sami								
	ime (min): (e	.1	Total Purge \	Volume (gal) :	~3.5		Review Date:	: 10.23-2	L.	
Weather:	40°F,	. 6.	Cloudy	0141110 (00)			Review By:	0 1		
Comments:		10-12.						U		
Bottle	es Filled	Preservat	tive Codes:	A-NONE B-	HNO3 C-H2S	O4 D-NaOH E	E-HCI F			
Quantity	Size	Type	Preservative Code	Filtered Y/N	Quantity	Size		Preservative Code	Filtered Y/N	
2	GOML	Type V OA	A	N	Quantity	\L	Plashc	B	N	
1	125 ml.		A-	N		16	1000	U	14	
1	125 mL	1 100,00	в	7						
1	250 ML		A	17						
* Pump rate sho		nin for low-flow a	nd <1 gal/min for I							

	HC Bookgro		Vale <u>10.15</u>	Well Material:	PVC		Iron	Galv. Steel		
Purge Metho	od:	Peristaltic		bmersible	Bla	adder	Fultz	Bail	er	
Depth to Wa	ter Tape: Ge	otech	S/N	1: 1005		-12				
QC SAMPLE:	N	/IS/MSD	DUP_		Sonde ID:	15M	19Н	_20M21G	22J	
Depth-to-wa	ter T/PVC (ft)	17.26	Depth-To-B	ottom T/PVC((ft) <u>26.83</u>		Completed by			
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity	
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU	
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%	
			Stablizatio	on parameters fo	or the last thre	e readings				
1105	Started	pump						17.28		
1110	8.62	13.1	116.7	75.4	7.92	+224.0	240	17.28	3.55	
1115	8.45	13.0	110.5	77.0	8.10	+221.8	240	17.28	3.01	
1120	8 . 67	13.2	11 1.9	78.1	8-19	+ 221.6	240	17.28	2.53	
1125	8.68	13.2	110.4	18.4	8-21	+221.9	240	17.28	2.64	
1130	8.68	13.2	108.2	78.6	8.24	+222.9	240	17.28	2.98	
1135	8 .08	13.2	108.9	78.1	8.25	+273.5	240	17.28	3.14	
1140	8.68	13.3	168.3	78.9	8.25	+224.3	240	17.28	3.39	
1145	8.68	13.3	109.0	78.9	8.27	+ 224.7	240	17.28	3.45	
1150	8.68	13.4	109.4	79.1	8.20	+ 225-1	240	17.28	3.50	
1151	collect	d.								
1205	End									
	Other									
				-						
Total Pump T	Time (min): ५ ((a	Total Purge V	olume (gal) :	~3.0		Review Date:	10.23-2	4	
Weather:	so cloud		17,000	10			Review By:	5 1	-	
	20 0,0 -0,	4					1,50	1		
Comments:								V		
Bottle	es Filled	Droserva	tive Codes:	A NONE B.I	INO2 C. H2S	O4 D-NaOH I	E UCLE			
Dottie	S Filled	Preserva	Preservative	A-NONE B-I	INUS C- 1123	U- NaUh	E-HCI F	Preservative		
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N	
2	Coml	Vor	A	N	2	11	Plashe	В	11	
	125 ml	Plashe	A	N						
1	125 ml		В	N						
	250 mL		A							

Well ID FP	3-01		Date 10.15.24 Control Number 24 - 0851 - 08							
Location <u>JV</u>	10 Backg	round	V	Vell Material:	PVC	SS	Iron	Galv. Steel		
Purge Metho		Peristaltic	Su	bmersible	Bladder Fultz Bailer					
Depth to Wa	ter Tape:		S/N	:						
QC SAMPLE:	N	IS/MSD	DUP_		Sonde ID:	15M	19H	_20M21G	22J	
Depth-to-wa	ter T/PVC (ft)	-	Depth-To-B	ottom T/PVC (ft)	_ /	Completed by LM 0			
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity	
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU	
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%	
0 0 111111	1, 0,2	.,,,		on parameters f					7,20,0	
1222	collected	Sample	e							
									7	
							18			
	1							1		
						(2) X				
Total Pump	Γime (min):	-	Total Purge V	'olume (gal) :	-		Review Date	10.23.	24	
Weather:							Review By	· H	-	
wedther.							neview by	·		
								U		
Comments:										
	الماشعانية					3. 3. 3. 3. 3.				
Bottle	es Filled	Preserva	tive Codes:	A-NONE B-I	HNO3 C-H2SC	04 D - NaOH	E - HCl F			
			Preservative					Preservative		
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N	
	125mL	Plashe	В	N						
1		- I		7.5						
	125mL		A	N						
	250mL		A	N	-					
2	16	-	B	И						
* Pump rate sho	ould be <500 mL/m	in for low-flow a	nd <1 gal/min for	high Volume.						

Location 15	1 C Backgr		Date <u>10.15</u>	Well Material:	PVC	SS [Galv. Steel	
Purge Metho	od:	Peristaltic	Su	bmersible	Blac	dder	Fultz	Bail	er
Depth to Wa	ter Tape:		S/N	l:					
QC SAMPLE:		/IS/MSD	DUP_		Sonde ID:	15M	119Н	_20M21G	22J
Depth-to-wa	ter T/PVC (ft)	-	Depth-To-B	ottom T/PVC (ft)		Completed by		
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
				on parameters f					
1210	collected	d sampl	e						
Total Pump T Weather:	Time (min):		Total Purge V	/olume (gal) :			Review Date:	-	4
Comments:								1	
comments.									2 = 1 E-3
	es Filled		Preservative	A - NONE B - H				Preservative	elli Jylai
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
	125ml	Plasme	В	1)					
	Woml		A	Ŋ					
	250mL		A	N					
2	11	L	B	N					
* Pump rate sho	ould be <500 mL/m	nin for low-flow ar	nd <1 gal/min for	high Volume.					

Consumers Energy Company Monitoring Well Sampling Worksheet

Well ID JHC-MW-150 06 Date 10-14-21 Control Number 24-0858-01 Location JHC Pond A Well Material: PVC SS Iron Galv. Steel									
Purge Method	l:	Peristaltic	Sul	omersible	∠ Blad	dder	Fultz	Baile	er
Depth to Wate	er Tape:	Geote	ech s/N	7371					
QC SAMPLE:	l N	is/MSD	DUP_		Sonde ID:	15M	19Н	20M <u>~</u> 21G	22J
Depth-to-wate	er T/PVC (ft)	34.54	Depth-To-Bo	ottom T/PVC (ft) 38.0	L	Completed by	CIE	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min 3-5 min	units +/- 0.1	°C NA	uS/cm +/- 3%	% sat. +/- 10%	ppm +/- 0.3ppm	mV +/- 10mV	mL/min	Drawdown ft < 0.33	NTU +/- 10%
10 0-				on parameters f	or the last thre	e readings		0	
1805			pump		Ta - 22 -		425	30.55	
1810	8.43	14.3	554	7.4	0.76	+144,7		*	1.50
1815	8,44	14.3	555	7.0	0.72	+136.0	425	*	1.36
1820	8.45	14.3	555	4.9	0.71	+131.6	425	*	1.35
1825	8.45	14.3	555	4.8	0.70	+125.7	425	*	1.30
1830	8.45	14.3	554	6.7	0.68	+115.5	425	*	1,29
1835		14.2	554	4.5	0.67	+107.0	425	-X	1.29
18410	8.46	14.2	554	4.5	مای. ه	+101.1	425	*	1.24
1845	8.46	14,2	554	6.4	0,66	+97.8	425	¥	1,27
1850	8.46	14.2	554	6.4	0.46	+ 95.3	425	*	1.25
1851	Colle	cted	Sample	2					
1904	end	*							
Total Pump Ti		40	Total Purge V	olume (gal) :	<u>~ 5.25</u>	5	Review Date:		يىر
Weather: Comments:	,	er level	Below p	ump - c	an't M	easure	Review By:		
Bottles	s Filled	Preservat	ive Codes:	A-NONE B-	HNO3 C-H2S	04 D - NaOH E	- HCl F		
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
1	125mL	HOPE	В	N	2	1-L	HDPE	B	7
	125ML 250ML	1	A						
7	60mL	VOA	A	1				*	
* Pump rate show		in for low-flow ar		high Volume.				· ·	

Well ID JHC- MW-15007R Date 10·14·24 Control Number 24-0858-02 -09 -100 Location JHC Pond A Well Material: PVC SS Iron Galv. Steel									
Purge Methoc	d:	Peristaltic	Su	bmersible	Bla	dder	Fultz	Bəʻil	er
Depth to Wate	er Tape: G	eoTech	S/N	: 7371					
QC SAMPLE:	✓ N	IS/MSD	DUP_	_	Sonde ID:	15M	19Н	_20M <u> </u>	i <u> </u>
Depth-to-wate	er T/PVC (ft)	37.70	Depth-To-B	ottom T/PVC	(ft) <u>43.05</u>		Completed by	/_CIE	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3% Stablizatio	+/- 10% on parameters f	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
1702	61.6	1010		n parameters j	or the last time	e reduings	1160	27.71	
F 7 A 77		ted pu		9.5	007	+1707	450	37.71	- 7
1715	7.83	-XTEE	475		0.97	†173.7	450		23.90
1720	7.98	n today hale if	472	7.1		+144.1	450	37.71	9.34
1725	8.63	13.7	672	7.0	1000	+129.8	450	37.71	4.43
1730	8.16	13.7		6.2		+61.8	450	37.71	2.33
1735	8.09	13.7	671	7.1	0.73	+49.3	450	37.71	1.93
1740	8.11	13.7	671	4.4	0,68	+47.2	450	37.71	1.91
1745	8.12	13,7	670	6.2	0.65	+45,7	450	37.71	1.48
1750	8.10	13.7	672	6.0		+64.2	450	37.71	1.63
1755	8.11	13.7	6-11	6.0	0.63	+ 63.1	450	37.71	1.42
1756		ected	SAMPI	e					
1809	enD								
Total Pump Ti	me (min):	54	Total Purge V	olume (gal) :	26.5		Review Date:	lo_ 23.	24
Weather:							Review By:	01	
		, +001	30111	H, win	10 /				- i
Comments:	coll	ected	FIELD	MSIM	SP 9			U	
Bottles	s Filled	Preservat	ive Codes:	A-NONE B-I	HNO3 C - H2S	O4 D - NaOH I	E-HCI F		
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
3	125mL	HDPE	B	N	2	1-1	HDPE	В	N
3	125mL		A						
2	25 OML	VOA	A			J*			
* 0		in for low flow or	A STATE OF THE STATE OF	high Valuma		L.			

Well ID JHC	-MW-15	008R	Date 10 · 2	4.24		Control Numb	per 24 - 6	858-03	-06
Location JHC	Pont A		. \	Vell Material:	PVC		Iron	Galv. Steel	
Purge Method		Peristaltic		bmersible	Bla	dder	Fultz	Bail	er
Depth to Wate	er Tape: G	eotech	s/N	: 7371					
QC SAMPLE:	N	IS/MSD	√ DUP_(22	Sonde ID:	<u>15M</u>	19Н	_20M21G	22J
Depth-to-wate	er T/PVC (ft)	44.69	Depth-To-B	ottom T/PVC ((ft) <u>47,5</u> <	8	Completed by	V CIE	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
			Stablizatio	on parameters f	or the last thre	ee readings			
1510	Star	ted p	ump				450	44.69	
1515	7.34	13.7	451	15.0	1.53	+ 231.4	450	44.69	1.44
1520	7.35	13.4	452	16.7	1.74	+230.0	450	44.67	1.44
1525	7.33	137	655	17.4	1.40	+ 212.3	450	44.69	1.51
1530	7.35		451	14.2	1.47	+195,4	450	44,69	1.42
1535	7.34	13.8	U52	14.0		+ 192.2		44.69	
1540	1.34		449	14.0		+ 190.3	450	44.69	1.43
1541		ed sam	1 - 1 - 1 - 1 - 1				, ,,,,		
1549		CV SOIII	(0)	÷					
1744	4nD								
Total Pump Tir	me/min):	31	Total Purge V	olume (gal) :	2271		Review Date:	10-21-	24
Weather:						0	Review By:	0/	
weather.	270	-, part	IL SIA	my, u	SIMBY		Review by.		
					Y			U	
Comments:									
Bottles	Filled	Preservat	ive Codes:	A-NONE B-I	HNO3 C-H2S	O4 D - NaOH E	- HCl F		
	6.	2000	Preservative	File 1 3/ fs/			- <u>-</u>	Preservative	File 1 3/51
Quantity 2	Size	Type	Code	Filtered Y/N	Quantity	Size	Type	Code	Filtered Y/N
2	125mL 125mL	HDPE	B	1/	1-2-4	1-L	HDPE	B	N
7	250ML	1	A						
4	40mL	VinA	A	1					
* Pump rate shoul		***	d <1 gal/min for	high Volume.					

	Vell ID								
Purge Method	:t	Peristaltic	Sul	bmersible	∨ Bla	dder	Fultz	Bail	er
Depth to Wat	er Tape: 💪	eotecr	S/N	: 7371					
QC SAMPLE:	N	/IS/MSD	DUP_	_	Sonde ID:	<u>√</u> 15M	19Н	_20M21G	22J
Depth-to-wat	er T/PVC (ft)	44.55	Depth-To-Bo	ottom T/PVC ((ft) <u>50.8</u>	0	Completed by	1_(16_	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
32.4.244				on parameters fo	or the last thre	e readings		50	
1340		ted p	M)				425	44.55	
1345	6.94	13.4	479.1	11.4	1,20	+ 201.7	425	44,55	3.67
1350	6.95	13.3	474.1	8.8	0,92	+193.6	425	44.55	2.11
1355	6.95	13.4	472.6	8.0	0.84	+190.3	425	44.55	1.96
1400	6.95	13,5	466.7	7.1	0.74	+175.5	425	44.55	1.63
1405	4.9-1	13.3	447.1	7.1	0.73	+173.6		44.65	1.61
1410	6.97	13.3	443.1	7.0	0.71	+172.1	425	44.55	1.54
1415	6.96	13.4	442.9	6.9	0.70	4170.4	425	44.55	1.49
1416		ted Sam					7		
1427	enD		(pic						
Total Pump Ti			Total Purge V		~ 4.0		Review Date:	10-25-	24
Weather:	550F	, parti	y Suny	, wind			Review By:	7	
Comments:									
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-H	HNO3 C - H2S	O4 D-NaOH E	- HCl F		
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
1	125mL	HDPE	В	N	2	1-L	HDPE	B	N
	125mL		A						
2	250ML WOML	VOA	A	1					
24	W. O. F. S.		nd <1 aal/min for h	hiah Volume					

	-MW-1501		Date 10-14			Control Numb			
ocation 111	C Pond A		W	Vell Material:	PVC	SS	Iron	Galv. Steel	
Purge Method		Peristaltic		omersible	Blad	dder	Fultz	Baile	er
Depth to Wate	er Tape: G	eotech	S/N:	7371					
QC SAMPLE:	N	ns/msd [DUP_		Sonde ID:	15M	19Н	_20M <u>~</u> 21G	22J
Depth-to-wate	er T/PVC (ft) _	38.48	Depth-To-Bo	ottom T/PVC ((ft) 45,19		Completed by	CIE_	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
1010	6.1			on parameters f	or the last thre	e reaaings	7.752	- 0	
1910	The state of the s	ted pur			0		400	38.70	
1915	6.90		400.2	4.3	0.45	+47.0	400	38.70	1.33
1920	6.88	13.3	399.0	Ч,Ч	0,46	+69.91	400	38.70	
1925	6.86	13.3	396.8	4.6	0.48	+69.5	400	38,70	1,24
1930	6.85	13.3	3 97.7	4.7	0.49	169.9	490	38.70	1.07
1935	4.86	13.3	398,1	4,7	0.40	T49.6	400	38.70	1.05
1940	6.86	13,3	398.7	4.7	0,49	+69.5	400	38.70	1.04
1941		ted bar	mole						
1956	end	Cot Cot.	0 1						
124	- 110								
								-	7
-		,							
					0				
Total Pump T	ime (min):	31	Total Purge V	olume (gal):	~ 3.5		Review Date	: 10-23	-24
Weather:	5	OF, Cle	ear				Review By	: Y	
								0	
Comments:									
Bottle	es Filled	Preservat	tive Codes:	A-NONE B-	HNO3 C-H2S	04 D - NaOH I	E-HCI F		
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
l			B	N	2	1-L	HDPE	В	N
7-1	125mL	1011	A	1					, ,
	125ML 125ML 250ML	1	A						
2	GOME	VOA	A	1				9	

Well ID \mathcal{F}	B-02 HC PUND		Date 10-14	- 24 Vell Material:	Control Number $24-0858-07$ I: PVC SS Iron Galv. Steel					
Purge Method		Peristaltic	Suk	omersible	Blad	der	Fultz	Baile	er	
Depth to Wate	er Tape:		S/N:							
QC SAMPLE:	M	IS/MSD	DUP_	_	Sonde ID:	15M	19H	19H20M21G22J		
Depth-to-wate	er T/PVC (ft) _		Depth-To-Bo	ottom T/PVC ((ft) Completed byCl &_					
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity	
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU	
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%	
				on parameters fo						
1908	col	ected '	sample							
		COI CH								
					-					
			-							
Total Pump T	ime (min):	-	Total Purge V	olume (gal):			Review Date	: 10-23-3	14	
Weather:							Review By	9		
7,200,000								1		
Line of Test										
Comments:								17	***	
Rottle	s Filled	Drosorva	tive Codes:	A-NONE B-H	HNO3 C-H2SC	M D - NaOH	F-HCLE-			
Bottle	J Timed	Fieserva	Preservative	A-NONL D-		T D NAON	11011-	Preservative		
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N	
1	125mL	HDPE	В		.,,	47.55	1114			
	125mL	11016	A							
	250mL		A				- 1			
2	1-L		В	0 0				9		
	1 6	•					1	11		

	B-02 IC Pont		Date <u>10·1</u> W	4-24 Vell Material:	PVC	Control Numl	oer <u>24-0</u>	858-08 Galv. Steel	
Purge Method		Peristaltic	Sub	omersible	Blad	der	Fultz	Baile	er
Depth to Wat	er Tape:		S/N:						
QC SAMPLE:	N	ns/msd	DUP_	4	Sonde ID:	15M	19Н	_20M21G	22J
Depth-to-wat	er T/PVC (ft)		Depth-To-Bo	ottom T/PVC (ft)		Completed by	V_CLE_	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
	1 1			on parameters fo					
2001	(111)	ected	San	1010					
				, , , , , , , , , , , , , , , , , , ,				62.00	
Total Pump T	ime (min):		Total Purge V	olume (gal) :	_		Review Date		4
Weather:							Review By	· V	~`
Comments:								0	
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-H	INO3 C-H2SC	04 D - NaOH	E-HCI F		
			Preservative					Preservative	
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
1	125ML	HDPE	B	N					
1	125mL		A						
	125mL 250mL		A						
2	1-L	1	В	1					
* Pump rate sho	uld be <500 mL/n	nin for low-flow a	nd <1 gal/min for	high Volume.			144		

Well ID M		lementa	Date 10 - 15		✓ PVC	Control Numb	lron		
Location 11	ic sopp	ienien 14a	,(v	Vell Material:	PVC	55	iron	Galv. Steel	
Purge Method	d:	Peristaltic	Suk	omersible	Blac	dder	Fultz	Baile	er
Depth to Wat	er Tape: C	neotecr	s/N:	7371					
QC SAMPLE:	N	ris/msd [DUP_		Sonde ID:	15M	19Н	20M <u>/</u> 21G	22J
Depth-to-wat	er T/PVC (ft)	11.19	Depth-To-Bo	ottom T/PVC ((ft) <u>13.36</u>	<u> </u>	Completed by	CIE	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3% Stablization	+/- 10% on parameters f	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
1530	Sta	rted	pump		or the last thre	redulings	120	11. 23	
1535		134	54.3	14.2	1.69	+69.7	120	11.23	1.69
1540	6.09	13.3	55.9	18.3	1.92	+71.4	120	11.23	1.27
1545		13.4	54.1	17.3		+88.0	120	11.23	1.09
1550	6.02	13.7	53.0	17.8	1.87	+97.4	120	11.23	1.05
1555	6.00	13.4	53.9	17.7	1.85	+105.9	120	11.23	1.03
1600	6.00	13.3	53.9	17.9	1.87	+110:0	120	11.23	1.05
1405	5.99	13.3	53.8	18.2	1.90	4114,2	120	11,23	1.01
1610	5,99	13,4	53,7	18,4	1,93	+116.4	120	11,23	1.03
1411	collec	ted 5	amples	5					
1627	ent								
						1			
Total Pump T				olume (gal) :	11.5		Review Date:	10-23.	. 24
Weather:	50°F,	, Sunry	, windy				Review By:	- Y~	ì
Comments:	Histori	c draw	daun-lo	w purae	Speed			U	
Bottle	es Filled	Preservat	Preservative	A-NONE B-I	HNO3 C-H2S	O4 D - NaOH I	E - HCl F	Preservative	
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
	125mL	HDPE	B	X	2	60mL	VOA	JB A	N
	125mL		B	N	1			101524	
	250ml	1	A	77					

* Pump rate should be <500 mL/min for low-flow and <1 gal/min for high Volume.

Well ID Location			Date 10 · 19	Vell Material:	PVC		oer <u>スリーの</u> Iron	3 <u>60-0ス</u> , -0 Galv. Steel	>9
Purge Method		Peristaltic		omersible	Blac		Fultz	Baile	er
Depth to Wat	er Tape: So	linst 101	P7 s/N	:LS030	2/023	-			
QC SAMPLE:		ns/msd [DUP_C		Sonde ID:	15M	19H	20M21G	√ 22J
Depth-to-wat	er T/PVC (ft)	15.95	Depth-To-Bo	ottom T/PVC	(ft) 18.28		Completed by	L KDR	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3% Stablization	+/- 10%	+/- 0.3ppm or the last three	+/- 10mV	*	< 0.33	+/- 10%
1149	Starte	& pump		m parameters j	or tire last times	reduings	296	16.04	
1152	7.66	13.7	43.3	75.7	7.86	52.4	296	16.05	3.17
1156	7.30	13.8	42.6	75.0	7.76	66.3	296	16.05	3.04
1200	7.17	13.7	42.6	75.0	7.79	78.6	296	16.05	2.97
1204	7.13	13.6	42.7	75.0	7.79	84.3	296	16.05	2.89
1208	7.10	13.le	42.7	75.0	7.79	89.6	296	16.05	2.85
1212	7.11	13.8	42.7	75.(7.78	94.0	296	16.05	2.84
1216	7.12	13.8	42.8		7.81	97.4	296	16.05	2.83
1217		ted sa							
1242		Sample		ction					
					,				
Total Pump T	ime (min):	28	Total Purge V	olume (gal) · ·	~2.5		Review Date:	10.23.	24
		Surny, L		oranie (gary :	۵. ٦		Review By:	- 1	,
			-1110					X	
Comments:								V	
Bottle	s Filled	Preservati	ive Codes:	A-NONE B-I	HNO3 C-H2SO	04 D - NaOH	E-HCI F		
0	61	-	Preservative	Filtowed V/N	0	61	4	Preservative	Eilhound V/h
Quantity 2	Size	Type HDPE	Code	Filtered Y/N	Quantity	Size	Type V⊘A	Code	Filtered Y/N
1	125 ml		B	Ÿ	4	IL	HDPE	B	V
2	125mL		A	Ŋ					
2	250mL	V	A	N					

* Pump rate should be <500 mL/min for low-flow and <1 gal/min for high Volume.

Well ID		to al	Date 10.1	5·29 Well Material:	PVC	Control Numb	1ron 1	Galv. Steel	
		•							
Purge Method		Peristaltic		bmersible	Blac	lder	Fultz	Bail	er
Depth to Wate	er Tape: So	linst 101	P7 s/N	: LS0300	13				
QC SAMPLE:	N	ns/msd	DUP_		Sonde ID:	15M	19H	_20M21G	<u>V</u> 22J
Depth-to-wate	er T/PVC (ft)	9.73	Depth-To-Bo	ottom T/PVC ((ft) <u> </u>		Completed by	KDR	
Time	рН	Тетр	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
11 27	c 1 1	×		on parameters fo	or the last three	readings	1011	6.07	
1633		eg ban		100	107	110	184	9.87	201
1639	le.01	13.9	99.7	18.0	1.82	66.9	184	9.87	2.51
1643	5.96	13.6	98,0	6.0	0.62	59,1	184	9.87	2.10
1647	5.96	13.5	95.3	4.6	0.48	56.2	184	9.87	2.01
1651	5.96	13.6	94.7	4.2	0.44	53.1	184	9.87	1.95
1655	5.96	13.6	93.9	4.8	0.50	49.9	184	9.87	1.92
1659	5.97	13.6	94.9	4.4	0.46	46.8	184	9.87	1.89
1703	5.97	13.5	94.6	4.3	0.45	44.7	184	9.87	1.82
1707	5.98	13.5	94.5	4.2	0.43	42.6	184	9.87	1.82
1708		ted so							
1720		Sample		ion					
11115	-,0-		1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1011					
Total Pump Ti	me (min): 3	5	Total Purge V	olume (gal) · (~ 2.0		Review Date:	19.23.	24
Weather:		Sunny, lig			~ ~ ~		Review By:	0/	-1
Weather.	10 11.	July !!	July William	<u> </u>			neview by.	0	- No.
Comments:								V	
Bottles	Filled	Preservativ	ve Codes: Preservative	A-NONE B-H	HNO3 C - H2SO	4 D - NaOH E	- HCl F	Preservative	
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
1	125ml	HDPE	B	N	2	60ml	VOA	A	N
1	125mL	7	B	Y	2	16	HDPE	B	N
1	125mL		A	N			140		
	250mL			N					

Well ID			Date 10.15	Well Material: Control Number 49-0860-09 Well Material: PVC SS Iron Galv. Steel						
Purge Method	l: 🚺	Peristaltic	Sul	omersible	Blac	dder	Fultz	Bail	er	
Depth to Wate	er Tape: Sol	inst 101	P7 S/N	LS0300	623					
QC SAMPLE:	N	1S/MSD	DUP_		Sonde ID:	15M	19Н	_20M21G	<u>✓22J</u>	
Depth-to-wate	er T/PVC (ft)	7.09	Depth-To-Bo	ottom T/PVC ((ft) 13.80		Completed by	y KPR		
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity	
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU	
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%	
1770	(1 (1)	\ D		n parameters f	or the last three	e reaaings	170	707		
1738	starte		T 3-3	12.8	120	150 0	172	7.82	2.7.0/	
1743	7.08	13.2	246.7		1.30	-158.9	172	8.22	35.06	
1747	7.60	12.9	248.9	4,1	6.43	-222.7	172	8.56	27.96	
17 51	7.72	12.7	251.2	3.2	0.34	-254.7	172	8.69	22.38	
17 55	7.79	12.6	261.2	2.5	0.2h	-259.9	172	8.70	18.14	
1759	7.87	12.6	278.9	2.1	0.23	-264.2	172	8.70	13.00	
1803	7.92	12.6	286.1	1.8	6.19	-270.9	172	8.70	12.09	
1807	7.95	12.Ce	286.7	1.6	6.17	-2683	172	8.70	14.39	
1811	7.97	12.6	293.5	1.3	0.14	-263,6	172	8.70	13.45	
1815	7.95	12.6	293.6	1.3	0.14	-257.1	172	8.70	11.60	
1819	7.90	12.6	296.3	1.3	6.13	-244,8	172	8.70	9.61	
1823	7.85	12.5	299.3	1.2	0.12	-233.4	172	8.70	6.66	
1827	7.81	12.5			6.13	-220.7		8.70	4.53	
1831		12.5			0.13	-214.0	172	8.70	4.61	
	7.73	12.4			0.13			8.70	4.72	
Total Pump Ti			Total Purge V				Review Date:			
Weather:	TATE OF A SALE		aht win		0.115		Review By:	01	:	
			3							
Comments:								V		
Bottles	Filled	Preservat	ive Codes:	A-NONE B-I	HNO3 C - H2S0	04 D - NaOH E	- HCl F-			
			Preservative					Preservative	Light was a	
Quantity	Size	Type	Code	Filtered Y/N	Quantity	Size	Type	Code	Filtered Y/N	
	125 mL	HDPE	B .	h	3	60mL	HDPE	B	N	
	125mL		A	Ń	8		MPIL		, ,	
1	250mL	1	A	N						
* Pump rate shou	ild be <500 mL/m	in for low-flow ar	nd <1 gal/min for h	nigh Volume.						

	72-24		Date 16.15			Control Numb			
Location	SHC	-	V	Vell Material:	PVC	SS	/ Iron	Galv. Steel	in .
Purge Metho		Peristaltic		omersible		dder	Fultz	Bail	er
Depth to Wat	er Tape: Sc	olinst 101	P7 s/N	: LS0306	23				
QC SAMPLE:		ns/msd [DUP_		Sonde ID:	15M	19Н	_20M21G	✓ _{22J}
Depth-to-wat	er T/PVC (ft)	7.09	Depth-To-Bo	ottom T/PVC (ft) <u>13.80</u>		Completed b	KDR	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3% Stablization	+/- 10% on parameters fo	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
1839	7.70	12.4	303,3	1.2	0.12		172	8.70	4.90
1843	7.69	12.4		1.2	0.12	-200.0	172	8.70	4.49
1844					0.10	200.0	1100	0.10	1, 19
1859	Ful	cted S Sumple	collec	tion		(
1001	LNG	sample	Correc	1 101 0					
Total Pump T	نے ime (min): کے	(,	Total Purge V	olume (gal) : 🕻	~3.0		Review Date:	10-23-	24
Weather:		Sunny, li					Review By:	- 1	-
		· · · · · ·	9.0.					1	
Comments:								V	
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-H	1NO3 C - H2SO	04 D - NaOH E	- HCL F-		
			Preservative	Marine at 13				Preservative	
Quantity	Size	Type	Code	Filtered Y/N	Quantity	Size	Туре	Code A	Filtered Y/N
	125mL	HDPE	B	7	3	60 ml	HDPE	R	N
	125mL		Ä	'n	~	10	וואוב	В	N/
Ì	250ML	1	À	N					_
* Pump rate sho	uld be <500 mL/m	nin for low-flow an	d <1 gal/min for l	nigh Volume.					

	72-40	>	Date 10.15	5.24		Control Numb	per 24 - C	0860-05	
Location	2 HC		V	Vell Material:	PVC	SS	Iron	Galv. Steel	
Purge Method	d: 🗸	Peristaltic	Sul	bmersible	Blac	dder	Fultz	Baile	er
Depth to Wat	er Tape: Sc	olinst 10	DIPZ S/N:	: LS030,	623				
QC SAMPLE:	[N	vis/msd	DUP_		Sonde ID:	15M	19Н	_20M21G	i <u>√</u> 22J
Depth-to-wat	ter T/PVC (ft)	13.10	Depth-To-Bo	ottom T/PVC	(ft) 17.96e		Completed by	V KDR	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3% Stablization	+/- 10%	+/- 0.3ppm for the last three	+/- 10mV	*	< 0.33	+/- 10%
1420	Stack	ted Pu		II purumeters j	Of the last times	redulitys	292	16.15	
1426	5.93	11.9	9 ,	59.4	6.30	92.8	292	F	7.24
1430	5.18	· ·	33.6 33.9	41.8	4.56	133.9		16.20	4.34
1434	5.15	11.5	33.8	41.1	4.47	144.9	292	16.25	2.85
1438			33.4	41.7				16.25	2.03
1442	5.15	11.5			4.54	149.2	292		
1446	5.15	11.5	33.8	40.8	4.45	153.4		16.25	2.75
	5.15	11.5	33.7	41.2	4.49	156.2			7.61
1450	5.15	11.5	33.7	41.2	4.48	159.7	292	16.25	2.56
1451	The second secon	teg son							
1505	FN9 S	unple C	collection						
						*			
								•	
Total Pump T	ime (min):	31	Total Purge V	olume (gal) : '	~2.5		Review Date:	: 10-23.2	24
Weather:	500F, W	we Kpnic	nny				Review By:	Y	٥
		1			3			0	
Comments:									
Bottle	s Filled	Preservat	tive Codes:	A-NONE B-	HNO3 C-H2SC	04 D - NaOH F	- HCl F		
			Preservative			1		Preservative	-11. 12/61
Quantity	Size 125 ml	HDPE	Code	Filtered Y/N	Quantity 2	Size 60mL	Type VOA	Code	Filtered Y/N
1	125ml	7	B	Y	â	I L	HDPE	B	N
1,	125ml		A	N		, -		,,,	
- 1	250ml	<u> </u>	A	h					
* Pump rate sho	uld be <500 mL/m	nin for low-flow ar	nd <1 gal/min for h	nigh Volume.					

Well ID			Date 10.1	Well Material:			ber 24-08	Galv. Steel	
Purge Method		Peristaltic		bmersible		dder	Fultz	Bail	er
Depth to Wat	er Tape: So	lins+ 101	P7 S/N	1: LS0300	623				
QC SAMPLE:	N	MS/MSD [DUP_		Sonde ID:	15M	19H	_20M21G	221
Depth-to-wat	er T/PVC (ft)	10.24	Depth-To-B	ottom T/PVC ((ft) <u>ユス.45</u>	_	Completed by	y KDR	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
1-11	4 . Chal	Diame		on parameters f	or the last three	? readings	700	1077	
1516	started				505	, -, >	308	10.27	7 7 7
1519	6.34	11.1	97.3	55.0	5.95	121.7	308	16.27	3.72
1523	6.65	10.7	98.1	45.2	5.02	146.4	308	10.27	2.35
1527	6.70	10.6	98.1	46.0	5.12	145.6	308	16.27	1.90
1531	6.72	10.5	98.1	46.2	5.1le	145.0	308	10.27	1.97
1535	6.73	10.5	98.1	46.7	5.21	140.1	308	10.27	1.88
1539		10.5	98.0	47.0	5.24	138.9	308	10.27	1.81
1543		10.5	98.0	47.2	5.26		308	10.27	1.77
1544		cted so		11.0	2.20	170.1	5-0	10. 2.	17.1
				1					
1557	End	Sompre	collect	Non					
Total Pump T	ime (min): 7	18	Total Purge V	/olume (gal) :	~2.5		Review Date:	: 10-23.2	4
		Sway, c		013			Review By:	0 /	
		2-4".	0,100					1	
Comments:								V	
Bottle	s Filled	Preservati	ive Codes: Preservative	A-NONE B-	HNO3 C-H2SC)4 D - NaOH	E - HCl F	Preservative	
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
1	125 ml	HOPE	B	N	2	60ml	VOA	A	N
(125ml		B	Y	2	11	HDPE	B	N
1	125 ML		A	Ŋ					
1	250nL	1	<u></u>	N		1			
* Pump rate show	uld be <500 mL/m	nin for low-flow an	id <1 gal/min for	high Volume.					

Well ID $\overline{\mathcal{T}W}$ Location λ'	19.05 ItC Suppl		Date 16.15	Nell Material:	V PVC		ber <u>24 -08</u> Iron	Galv. Steel	
Purge Metho	d: 🗸	Peristaltic	Sub	bmersible	Bia	adder	Fultz	Bail	er
Depth to Wat	ter Tape: 6	seatech	S/N	: 1005					
QC SAMPLE:		MS/MSD	DUP_	_	Sonde ID:	<u>√</u> 15M	19H	_20M21G	22J
Depth-to-wat	ter T/PVC (ft)	17.64	Depth-To-Bo	ottom T/PVC ((ft) <u>18.55</u>		Completed by	y un o	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/-0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm		*	< 0.33	+/- 10%
1010			Stabilzatio	on parameters fo	or the last thre	e readings		7 07	
1810	Stour ted	pump					220	17.85	
1811	slowed	pomp					110	17.73	
1820	7.64	11.9	460.0	10.7	1.16	+133.7	110	17.73	1.82
1825	7.62	11-8	461.6	9.2	0.99	+133.7	110	17.73	1.28
1830	7.42	11.7	461.3	8.7	0.94	+133.1	110	17.73	1.30
1835	7.62	11.7	461.5	8.8	0.95	+139.0	110	17.73	1.28
1840	7.61	11.7	458.5	9.0	0.95	+ 136.9	110	17.73	1.25
1841	collect	ed samp	14						
1903	End.								
						1			
							G		
Total Dumn 1	ime (min): 31	1	Total Burgo V	(aluma (gal) i			Review Date:	1000	
Weather:	9.		Total Pulge vi	olume (gal) :	~1.0		Review Date:	- 1	
Weather.	50 c/0	ay					Neview by.		
Comments:								U	
	es Filled	Preservati	lyo Codes	A-NONE B-I	LNOS C. HSS	604 D - NaOH	E HOLE.		
Dottic	3 Filled	Fledervan	Preservative	A THORE D	IIVOS CATILO	U4 D-Maon	L-Herr	Preservative	
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
2	60 mL	VON	A	N	2	IL	Plashc	B	1)
1	125 ml	Plastic	P	N					
1	125 mL		В	N					
V	250 ML	min for low-flow and	A	N I					

Well ID Location 山(Date <u>ID - 19</u>	5 · 24 Vell Material:	✓ PVC	Control Numb	per <u>24 - 080</u> Iron	<u>ev ·08 , -10, -</u> Galv. Steel	II)
Purge Method	d:	Peristaltic	Su	bmersible	Bla	dder	Fultz	Bail	er
Depth to Wat	er Tape: G	eoteci	O S/N	:7371					-
QC SAMPLE:		/IS/MSD	DUP_		Sonde ID:	15M	19Н	20M <u>V</u> 21G	22J
Depth-to-wat	er T/PVC (ft)	14.62	Depth-To-B	ottom T/PVC	(ft) 15.3	<u>,1</u>	Completed by	_ UE	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min 3-5 min	units +/- 0.1	°C NA	uS/cm +/- 3%	% sat. +/- 10%	ppm +/- 0.3ppm	mV +/- 10mV	mL/min	Drawdown ft	NTU +/- 10%
	, , , , ,			on parameters f				1 10.00	., 10,0
1450	Sta	rted f	ump		y		180	14.62	
1455		12.7	127.8	42.7	4.52	+80.3	180	14.63	1.10
1700	7.18	12.7	129.0	42.2	4.47	+88.1	180	14.63	1.12
1705	7.22	12.4	130.2	41.7	4.43	494.4	180	14.63	1.10
1710	7.25	12.4	131.7	40.4	4.31	+101.2	180	14.63	1.04
1716	7,24	12.6	132.7		4,33	+105,2	180	14.63	
1720	7.28	12.6	133,7		4.20	+109.4	180	14.63	1.03
1721		ed San	ALL AND CHARLE						
1740	ent								
	OV 11								
									300
									l ésf
Total Pump T	ime (min):	31	Total Purge V	olume (gal) :	21.5		Review Date:	10.23.	24
Weather:			M, Wir				Review By:	0 4	<u>.</u> ,
								1	
Comments:		collect	ted Fil	eld Ms	MSD			V	
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-	HNO3 C-H2S	O4 D-NaOH I	E-HCL F-		
			Preservative					Preservative	
Quantity 2	Size	Type	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
3	125mL 125mL	HIPPE	B	N	2	1-L	HDPE	B	N
Ĭ	250ML	1	A						
2	GOML	VOA	A	1				0_1	
* Pump rate shou	uld be <500 mL/n	nin for low-flow ar	nd <1 gal/min for	high Volume.			•		

Site: JH Campbell

24-0278

24-0285,24-0284,24-0283,24-0282,24-0281,24-0280,24-0279, **Project No:**

Analyst: LMO ICLE

Reviewed by: **Review Date:**

4-15-24 Date:

Electronic Tape

Tape ID:

Method:

Geotech

S/N: 1009-22

Well ID	Time	DTW (ft)	DTB (ft)	Re-Check (if needed)	Remarks
JHC-MW-15017	1046	16.80	22.93		G000
JHC-MW-15018	1050	17.47	12.95		G00D
MWB1	1043	35.25	35.25	e ⁽²⁾	DY4 @ 4.18.24 @ 1043 DY4 @ 4.14.24 @ 1905
MWB2	1040	37.68	37.77		bry @ 4.14.24 @ 1905 Check@ 4.17.24 @ 1900 237.69
MWB3	1033	39.65	40.20	2	4000
MWB4	1029	41.75	47.74	11	G100D
JHC-MW-15035 (MW-B5)	0755	41.31	45.28		GOOD
JHC-MW-15031	1617	43.70	46.18		G00)
JHC-MW-15036 (MW-B6)	1009	27.01	32.52		Broken well hinge
JHC-MW-15037 (MW-B7)	0958	25.27	30.90		G00D
MW-8	0953	29.19	33.42		Acap
MW-8C	0955	29.80	43.10		GOUD
JHC-MW-15032	0947	17.03	24.05		Good
JHC-MW-15034	0942	18.70	23.98		GOUD
JHC-MW-15023	0938	1-1.96	27.67		GOOD not locked weart
MW5	0935	11.29	16.55		G00D
MW4	0925	31.71	32.72	9	Good
JHC-MW-15024	0915	13.68	19.92		GOOD
JHC-MW-15025	0910	13.20	19.90		GOOP
MW3	0902	12.50	16.43	, A	G000
JHC-MW-15026	0857	15.19	21.02		Goop
JHC-MW-15027	0847	15.80	23.00		GOOD
MW1	0842	12.92	14.07		400P
JHC-MW-15028	0837	14.57	20.82		6000
JHC-MW-15029	6827	12.82	20.91		6000
H C-MW-15035	1026	th 041524			Form Rev 10-13-23

Site: JH Campbell

Project No: 24.0285

Analyst: CLE LMO Reviewed by:

Date: 4.15.24 Review Date: 104-24-24

Method: Electronic Tape

Tape ID: Geotech S/N: 1009-22

Well ID	Time	DTW (ft)	DTB (ft)	Re-Check (if needed)	Remarks
HC-MW-15009R	1125	43.29	50.80		GOOD locked
HC-MW-15008R	1123	43.68	47.44		GOOD locked
HC-MW-15007R	1119	36.14	43.10		GOOD (oche.)
JHC-MW-15006	1115	35.10	38.00		Good Locked
JHC-MW-15011R	1103	37.40	45.20		GOOD LOCKED GOOD LOCKED GOOD LOCKED GOOD LOCKED
			7		
					Y-

Site: JH Campbell

Project No: 24-0285,24.0284,24-0283,24-0282, 24-0281,24-0280,24-0279, 24:0278

Analyst: (16, CMO Reviewed by:

Date: 4.15.24 Review Date: 04-24-1-4

Method: Electronic Tape

Tape ID: Gestech S/N: 1009-22

Well ID	Time	DTW (ft)	DTB (ft)	Re-Check (if needed)	Remarks
JHC-MW-15030	1142	10.51	16.90		GOOD, locked
MW-22-16	1149	4.35	11.95		GOOD, locked
PZ-37 (Gated Plant Area)	1154	5.20	20.03		GOOD, locked GOOD, locked
PZ-23	1134	13.45	14.40		Good, Tocked
PZ-23S	1137	15.09	17.50		GOOD, locked
, e ,					
			5		
9					
				e	
×					
					5

Site: JH Campbell

Project No: 24-6278,-0279,-0280,-0281,-0282,-0283,-0284,-0285

Analyst: KDR Reviewed by: ッペーンペーンソ

Date: 4.15.24 Review Date:

Method: Electronic Tape

Tape ID: Solinst 101 P7 S/N: LS030623

Well ID	Time	DTW (ft)	DTB (ft)	Re-Check (if needed)	Remarks	
MW-9B	0757	21.86	29.59		hood	
MW-9C	0759	21.12	41.39		hood	
MW-9D	0801	20.95	54.75		Good Locked	
MW-10B	0807	14.12	23.54	2.	bood	
MW-13	0813	9.98	16.25	Dry	located Recheders on 4.16.24 at 2	ኒ ዕ:3ጊ
MW-14	0817	10.28	17.46		hood Locked	
MW-14S	6818	11.02	13.29		Good	
PZ-24	0826	5.24	13.81		Good Locked	
PZ-24S	0828	7.77	11.09		GOOD LOCKED	
PZ-40	0035	7.98	22.45		hood locked	
PZ-40S	6836	10.83	17.98		1002 100162	
MW-12	0751	8.59	9.82		Good	
MW-11A	0855	10.98	16.65		4001	
MW-15	0857	14.66	16.39		GOOD Joules	
MW-16A	0859	12.64	20.90	v	Locked	
MW-17	0901	15.71	23.48		Good Locked	
RW-1	14 44	30.25	48.40		4000	
RW-2	1710	34.72	49.40		५००२	
RW-3	1732	17,25	23.30		4001	
RW-4	17 63	16.90	22.00		Good	
RW-5	1816	9.91	21.63		G002	
RW-6	1830	14.95	21.95		Good	
RW-7	1843	12.00	20.12		Good	
SG-22-1	6910	1.30			4001	
SG-22-2	0913	1.26	-		G00d	

NOTES: TOC reference point (top of steel plate for RWs)

Form Rev.10-13-23EB

Site: JH Campbell

Project No: 24-0278, -0279, -0280, -0281, -0282, -0283, -0284, -0285

Analyst: I∠DR Reviewed by:

Date: 4.15.24 Review Date: 194-24-24

Method: Electronic Tape

Tape ID: Solinst 101 P7 S/N: LS030623

Well ID	Time	DTW (ft)	DTB (ft)	Re-Check (if needed)	Remarks
MW-22-13	11:05	9.39	15.19		Locket
MW-22-12	10:57	6.06	12.38		100d
MW-10AR	11:01	14.27	14.31		Good
TW-19-05	10:33	15.69	18.55		4002
TW-19-06A	10:28	12.78	15.31		4002
MW-22-11	10:51	6.59	14.83		400d
MW-22-10	10:45	7.17	28.55		Good
MW-22-09	10:42	6.80	14.02		Locked
MW-22-08	10:22	7.48	16.85	-	1001 100166
MW-22-07	10:16	10.02	17.83		400 b
MW-22-06	10'.12	6.45	14.80		4001 1045ch
MW-22-05	10:05	8.87	16.59	5	Locker
MW-22-04	09:59	6.51	14.83		locked
MW-22-03	09:51	3.73	14.85		Good
MW-22-02	09:33	9.06	12.81		hood
					ē.
					2
		3.00			
MOTEC	TOC reference		1 -1-1- f DIA/-1		Form Poy 10 13

Site: JH Campbell

Project No: 24-0278,-0279,-0280,-0281,-0282,-0283,-0284,-6285

Analyst: KDK Reviewed by:

Date: 4.15.24 Review Date: 194-24-24

Method: Electronic Tape

Tape ID: Solinst 101 P7 S/N: LS036623

Well ID	Time	DTW (ft)	DTB (ft)	Re-Check (if needed)	Remarks
PZ-21-01	1128	34.39	38.30		housed
PZ-21-02	1143	37.52	43.64		10000
PZ-21-03	1148	38.00	43.77		Good
PZ-21-04	1201	38.87	44.32		GOOD !
PZ-21-05	1208	34.06	43.10		Good
PZ-21-06	1155	38.84	46.00		Good
PZ-1203	1217	Dry	37.90	9	Good
PZ-1204	1224	DLA	31.12		100g
PZ-1205	1230	35.07	35.95		Gooded
PZ-1206	1238	Dry	27.00		Good 162Ked
PZ-1208	1244	Dry	37.27		GOOD
PZ-1212	1210	Dry	24.70		Good
					,
,			2		
					4
					1
NOTE	S: TOC reference	point (top of stee	al plate for RIV(s)		Form Rev 10-13-2

Laboratory Services A CENTURY OF EXCELLENCE

Sonde ID	15H
Start Date	04-15=2024
Project #	Q2.7024 JHC GW
Site	
Reviewed	ah' .
By & Date:	04-24-24

Equipment Details	Model & S/N
Monitor Brand	YSI ProDSS S/N 19F104713
Sonde Brand	YSI ProDSS S/N 15H101425 262909-1
Flow Cell	EXO1 599080
DO Probe (95.2)	YSI ProDSS S/N 15G103714
Turbidity Probe	YSI ProDSS S/N 21H105795
pH With ORP	YSI ProDSS S/N 22D102306
Conductivity & Temperature Probe	YSI ProDSS S/N 22G103712

pH Standard (±0.1)	Source	Source Lot#	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4 th Daily Filed Checks Completed	End Project Calibration Value
4.0	GFS # 1634	24003185	5.31.25	4.05	3.99	4.01	3.98		
7.0	GFS # 1639	24003597	7.24.25	7.04	7.00	1.00	1.01		
10.0	GFS # 1645	24003166	6.18.25	9.94	9.99	9.99	10.01		
			nitials & Date:	4.12.24 Cle	4.15.24 CU	4-14-24	4-17.24 CU		

Is the same standard used for calibration and as-founds?

(if no, document on pg. 2)

Are the calibration values within ±0.10 of the standard?

(V) or

N (if no, recalibration is required)

ORP Standard (±10 mV)	Source	Source Lot #	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3rd Daily Field Checks Completed	4 th Daily Filed Checks Completed	End Project Calibration Value
+228 (mV)	GFS	24005992	7.4.24	+229.1			427.3	(X 1)	
	Initials & Date:					4.14.24	4.17:24		

Is the same standard used for calibration and as-founds?

Are the calibration values within ±10% of the standard?

Y or Nif no, document on pg. 2)
Y or N (if no, recalibration is required)

DO	Source	Source Lot #	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4th Daily Filed Checks Completed	End Project Calibration Value
90-110% saturation	DI Water	N/A	N/A	95.2	95.3	95.0	95.1		
		1	nitials & Date:	04-12-24	4.15.24	4.14.24	dl 4-17.24		

Is the same standard used for calibration and as-founds?

Are the calibration values within 90-110%?

or (if no, document on pg. 2)
or N (if no, recalibration is required)

Sonde ID	15H	Project #: 24-0278 to 24-0283
Start Date	04.15-2024	
Reviewed		Site:
By &	af.	
Date:	V 04-24-24	02-2024 JHC GW

Specific Conductance (uS/cm)	Source	Source Lot#	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4th Daily Filed Checks Completed	End Project Calibration Value
GOA = 1403	GFS 4	-30982	7.3.24						
	24003734_	_		1413	1403	1404	1407		
		ln	itials & Date:	C4 041224	4.15.24	4.16.24	4.17-24		

• Is the same standard used for calibration and as-founds?

Are the calibration values within ±3% of the standard?

Y or Wif no, document on pg. 2)
On N (if no, recalibration is required)

Turbidity (NTUs)	Source	Source Lot#	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4 th Daily Filed Checks Completed	End Project Calibration Value
0	DI Water			-0.20	-0.07	-0.01	0.03		
40.0 (±4.0 NTUs)	Hach 2746356	A2122	05.2024	38.99	39.47	38.91	36:11		
800.0 (±80.0 NTUs)	Hach 2660553	A 2188	07-2024	802.5	169.11	789.34	180.13	•	
a le the cam	Initials & Date					4.14.24	4.17.24		

Is the same standard used for calibration and as-founds?

Are the calibration values within ±10% of the standard?

or (if no, document on pg. 2)
or N (if no, recalibration is required)

Additional Information for calibration standards

Standard	Source	Source Lot #	Source Exp. Date	Standard	Source	Source Lot	Source Exp. Date
pH 4.0	6FS	22370024	9.9.24	pH 9.0	_		
pH 7.0	GFS	24002182	4.22.25	ORP	GFS 17781	24005728	6.24.24
pH 10.0	GES71	22350848	8.8.24	2			2.
Sp. Conductivity	30982	24003734	7.3.24				
40.0 Turbidity 800	Hach	A 2089	05-2024				
40.0 Turbidity	Haen	A2315	11-2024				

Laboratory Services A CENTURY OF EXCELLENCE

Sonde ID	21G	
Start Date	4.12.24	24-6218, 24-0279
าร	1-0280,24.	0281 ,124-0282,24,0283
Project #	JHC	24-628, 24-0279 -0281 ,24-0282,24,0283 24-0285,24-0286
Site	SHC	
Reviewed	9.4	,
By & Date	V	04-24-24

Equipment Details	Model & S/N
Monitor Brand	YSI ProDSS S/N 21G102278
Sonde Brand	YSI ProDSS S/N 21G105848
Flow Cell	EXO1 599080
DO Probe 95.9	YSI ProDSS S/N 21G101534
Turbidity Probe	YSI ProDSS S/N 21G101646
pH With ORP	YSI ProDSS S/N 21H101604
Conductivity & Temperature Probe	YSI ProDSS S/N 21G101888

pH Standard (± 0.1)	Source	Source Lot#	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4th Daily Filed Checks Completed	End Project Calibration Value
4.0	GFS # 1634	24003185	5.21.25	4.09	4.09	4.65	4.04		
7.0	GFS # 1639	24003597	7.24.25	7.06	7.67	7.04	7.05		
10.0	GFS # 1645	24003154	5.28 .25	10.0		9.98			
			Initials & Date:	UNO 4.12.24	4.15.24	4.14.2	441.24		

- Is the same standard used for calibration and as-founds?
- N (if no, document on pg. 2)
- Are the calibration values within ±0.10 of the standard?
- 80 or N (if no, recalibration is required)

ORP Standard (± 10mV)	Source	Source Lot #	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3rd Daily Field Checks Completed	4 th Daily Filed Checks Completed	End Project Calibration Value
(mV)	GFS# 3525	24005992	7.4.24	229.4		2280	L28.0		
			Initials & Date:	4.12.24	4.15.24	4.16.24	4.17.24		

- Is the same standard used for calibration and as-founds?
- N (if no, document on pg. 2) 0 or
- Are the calibration values within ±10% of the standard?
- Ø N (if no, recalibration is required). or

DO	Source	Source Lot#	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4th Daily Filed Checks Completed	End Project Calibration Value
90-110% saturation	DI Water	N/A	N/A	94.4	100.5	94.9	95.4		
	Initials & Date: 4.12.74 4.15.24 4.14.14 4.17.74								

- Is the same standard used for calibration and as-founds?
 - 3
- N (if no, document on pg. 2)

Are the calibration values within 90-110%?

N (if no, recalibration is required)

Sonde ID	21G	Project #: 24-0278 , 24-0279
		24-0282, 24-0281, -24-0280
Start Date	4.12.24	24-0285, 24-0284, 24-0283
Reviewed		Site:
By & Date:	V 04-24-24	JHC

	36						4220	202	
Specific Conductance (uS/cm)	Source	Source Lot#	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4th Daily Field Checks Completed	End Project Calibration Value
(1403	UFS # 2174	24003734	. 0	1393	1394	1379	1410	·	
	•		Initials & Date:	4.12.24	4.15.24	4.16.24	4.17.2	4	

Is the same standard used for calibration and as-founds?

Are the calibration values within range of the standard?

or N (if no, document on pg. 2)

N (if no, recalibration is required)

3rd Daily Field Checks Completed 4th Daily Field Checks Completed End Project Calibration Value 2nd Daily Field Checks Completed 1st Daily Field Checks Completed Pre -Project Calibration Value Source Exp. **Turbidity** Source Source (NTUs) Lot# Date 0.06 0.13 009 0 **DI Water** 0.19 Hach 05/2024 40.0 A2122 2746356 38.64 40.88 41.00 (± 4.0 NTUs) Hach 7/2024 0.008 AZ 188 2660553 (± 80.0 NTUs)

Is the same standard used for calibration and as-founds?

• Are the calibration values within ±10% of the standard?

or N (if no, recalibration is required)

Additional Information for calibration standards

Initials & Date:

Standard	Source	Source Lot #	Source Exp. Date	Standard	Source	Source Lot #	Source Exp. Date
pH 4.0				pH 9.0 Check		×	
pH 7.0	1			ORP			
pH 10.0							
Sp. Conductivity					A		
40.0 Turbidity							,
10.0 Turbidity							

Laboratory Services A CENTURY OF EXCELLENCE

Sonde ID	221
Solide ID	223
	11.7 = -11
Start Date	4.15.24
	24-0278,-0279,-0280,-0281,-6282,-6283 -0284,-0285
Project #	-A2 04 - A205
1 Tojoot n	0001 (-000)
0.4	ブル /
Site	J 11C
Reviewed	9/:
By & Date	04-24-24

Equipment Details	Model & S/N
Monitor Brand	YSI ProDSS S/N 22L102214
Sonde Brand	YSI ProDSS S/N 22J103704
Flow Cell	EXO1 599080
DO Probe 96.	YSI ProDSS S/N 23B101266
Turbidity Probe	YSI ProDSS S/N 22K100049
pH With ORP	YSI ProDSS S/N 23A103253
Conductivity & Temperature Probe	YSI ProDSS S/N 23C105385

pH Standard (± 0.1)	Source	Source Lot#	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4 th Daily Filed Checks Completed	End Project Calibration Value
4.0	GFS # 1634	24003185	2.31.52	4.00	4.03	4.64			4.06
7.0	GFS # 1639	24008587	1.21.26	7.00	7.02	7.01			7.08
10.0	GFS # 1645	22350048	8.18.24		10.04	10.03			10.05
			Initials & Date:	4.14.2	KPR 14.15.24	4.16.24			4.17.24

- Is the same standard used for calibration and as-founds?
- Are the calibration values within ±0.10 of the standard?
- N (if no, document on pg. 2)
 - N (if no, recalibration is required)

ORP Standard (± 10mV)	Source	Source Lot#	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4 th Daily Filed Checks Completed	End Project Calibration Value
<u>+228.0</u> (mV)	GF1 # 5525	24005728	6.4.24	228.0	227.4	226.8			224.3
			Initials & Date:	KDR 4.14.24	4.15.24	120R 4.16.24			120R 4.17:24

- Is the same standard used for calibration and as-founds?
- N (if no, document on pg. 2)
- Are the calibration values within ±10% of the standard?
- N (if no, recalibration is required).

DO	Source	Source Lot#	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3rd Daily Field Checks Completed	4 th Daily Filed Checks Completed	End Project Calibration Value
90-110% saturation	DI Water	N/A	N/A	96.1	96.9	97,5			97.1
			Initials & Date:	4.14.24	4.15.24	11. 10. 24 4. 16. 24			11.17.24

- Is the same standard used for calibration and as-founds?
- Are the calibration values within 90-110%?
- N (if no, document on pg. 2)
 - N (if no, recalibration is required)

Sonde ID	22J	Project #: 24-6278,-0279,-0280 -0281, -0282,-0283,-0284,0285
Start Date	4.15.24	-0281, -0282, -0283, -0284,0285
Reviewed By & Date:	Y 04-24-24	Site: 3 HC

Specific Conductance (uS/cm)	Source	Source Lot#	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4th Daily Field Checks Completed	End Project Calibration Value
1403 (1399-1427)	4F5# 2174	24003734	7.3.24	1403	1404	00			1410
			Initials & Date:	1777 1777	KDR 4.15.24	1.16.24			1(DR 4-17-24

• Is the same standard used for calibration and as-founds?

Are the calibration values within range of the standard?

or N (if no, document on pg. 2)
or N (if no, recalibration is required)

Turbidity (NTUs)	Source	Source Lot#	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4th Daily Field Checks Completed	End Project Calibration Value
0	DI Water			0.00	0.05	0.06			0.09
40.0 (± 4.0 NTUs)	Hach 2746356	A2315	11.24	40.00	40.61	40.29			38.33
800.0 (± 80.0 NTUs)	Hach 2660553	A3063	5.25	860.00	782.19	777.15			769.87
			nitials & Date:	41424	_K የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ	16.16.24			10R 4-17-24

• Is the same standard used for calibration and as-founds?

Y or N (if no, document on pg. 2)

Are the calibration values within ±10% of the standard?

or N (if no, recalibration is required)

Additional Information for calibration standards

Standard	Source	Source Lot #	Source Exp. Date	Standard	Source	Source Lot #	Source Exp. Date
pH 4.0				pH 9.0 Check			
pH 7.0				ORP			
pH 10.0							
Sp. Conductivity							
40.0 Turbidity							
10.0 Turbidity							

and the law

WATER LEVEL DATA

Site: JH Campbell

Project No: 24-0857, -0858, -0859, -0860, -0861, -0862

Analyst: LMO/CLE

Reviewed by:

Date: 10.14.24

Review Date: () 10-23.

Method: Electronic Tape

Tape ID: Geotech S/N: 1005 7372

Well ID	Time	DTW (ft)	DTB (ft)	Re-Check (if needed)	Remarks
JHC-MW-15017	1001	18.11	22.95		6000
JHC-MW-15018	1605	18.45	22.95		Gord
MWB1	1010	_	35.25		Dry
MWB2	1013	_	37.60		Dry
MWB3	1015	39.70	40.20		600d
MWB4	1019	42.41	47.70		6004
JHC-MW-15035 (MW-B5)	1023	42.01	45.25		600d
JHC-MW-15031	1024	44.41	46.14		600d
JHC-MW-15036 (MW-B6)	1636	28.31	32.59		60 od
JHC-MW-15037 (MW-B7)	1032	24.10	30.96		Good
MW-8	1034	29.71	33.43		6000
MW-8C	1034	30.36	63.10		6000
JHC-MW-15032	0845	18.74	24.00		Good, Locked
JHC-MW-15034	0859	17.83	23.91		Good, well cover doesn't fit
JHC-MW-15023	6907	20.00	27.71		Good, Locked *
MW5	0927	13.36	15.54		Good, locked *
MW4	1006		32.74		Good, Dry
JHC-MW-15024	1012	15.46	19.94		Good, locked *
JHC-MW-15025	1017	14.91	19.89		Good, locked
MW3	1042	14.18	16.44		Good, locked +
JHC-MW-15026	1024	14.74	21.02		Good, locked *
JHC-MW-15027	1057	17.40	23 00		Good . locked *
MW1	1104	14.64	16.03		600d, 10cked *
JHC-MW-15028	1111	17.24	20.83		Good , locked
JHC-MW-15029	1135	14.44	20.90		600d, 100ked >

NOTES: TOC reference point (top of steel plate for RWs)

Form Rev.10-13-23EB

Site: JH Campbell

Project No: 24 . 0858

Analyst: (16 Reviewed by:

Date: 10-14-24 Review Date: 10-23-24

Method: Electronic Tape

Tape ID: Geotech S/N: 7371

Well ID	Time	DTW (ft)	DTB (ft)	Re-Check (if needed)	Remarks
JHC-MW-15009R	0849	44.54	50.80		G000
JHC-MW-15008R	0852	44.05	47.58		6000
JHC-MW-15007R	0855	37.69			G00D
JHC-MW-15006	0858	34.54			6000
JHC-MW-15011R	0901	38.68	45.19		GOOD
		F			
		noint (top of stee	Label Carpital		Form Pey 10-13-2

10-23-24

WATER LEVEL DATA

Site: JH Campbell

Project No: THE Q4 2024

Analyst: CIE

Reviewed by:

10-14-24 Review Date:

Method: Electronic Tape

Date:

Tape ID: Greatech S/N: 7371

Well ID	Time	DTW (ft)	DTB (ft)	Re-Check (if needed)	Remarks
JHC-MW-15030	0921	12.01	16.94		GOOD
PZ-37 (Gated Plant Area)	0930	U.40	20.02		Overgrown shrubs
PZ-23	0910	14.25	16.73		GOOD
PZ-23S	0912	15.94			4008
V					

Site: JH Campbell

Project No: 24-0857,-0858,-0859,-0860,-0861,-0862

Analyst: KDR Reviewed by:

Date: 16.14.24 Review Date: 0.0.

Method: Electronic Tape

Tape ID: Solinst 101 P7 SIN: LSO30623

Well ID	Time	DTW (ft)	DTB (ft)	Re-Check (if needed)	Remarks
MW-18A	0850	29.29	37.11		Locked
MW-9B	0855	22.34	29.57		Locked
MW-9C	0857	21.60	41.38		Locked
MW-9D	0859	21.45	54.71		Good
MW-10B	0903	15.07	23.54		Good louted
TW-19-05	0908	17.63	18.55		Good
TW-19-06A	0914	14.62	15.31		GOOD TOCKED
MW-13	0921	_	10.27		GOOF, LOCKES 10-14-24 at 0848
MVV-14	0925	10.41	17.56		
MW-14S	0927	11.18	13.30	0	Good, Locked
PZ-24	0933	7.19	13.80		Good, Locked
PZ-24S	0935	9.75	11.11		Good, Locked
PZ-40	0943	10.24	22.45		Good, Locked
PZ-40S	0945	13.07	17.96		Good, Locked
MW-12	0959	9.52	9.78		Good, locked

Site: JH Campbell

Project No: 24-0857,-0858,-0859,-0860,-0861,-6862

Analyst: KDR Reviewed by:

Date: 10 14 24 Review Date: 10-23-24

Method: Electronic Tape

Tape ID: Solinst 101 P7 S/N: LS030623

Well ID	Time	DTW (ft)	DTB (ft)	Re-Check (if needed)	Remarks
MW-11A	1014	10.56	16.65		400d, Locked
MW-16A	1016	12.29	20.90		Good, Locked
MW-15	1019	13.75	16.36	3 1	Good, Locked
MW-17	1051	15.44	23.46		Good, Lockez
P1S	1024	16.20	22.63		Good, Locked
P2S	1026	14.91	22.73		400d, Locked
P3S	1028	14.98	22.83		400d, Locked
P5S	1030	14.16	22.57		6,00d, Locked
P6S	1032	13.55	22.85		Good, Loclled
P7S	1037	13.05	22.93		Good, Locked
P9S	1035	9.47	19.98		Broken on TOP, Locked
P10	1038	9.91	10.73	315	Broken on TOP, Locked working installed plug The Plug and locked
P11	1040	8.06	9.75		Good, Locked
100					
RW-1	1358	30.35	48.45		G00d
RW-2	1419	34.40	49.65		Good
RW-3	1455	15.75	23.66		G002
RW-4	1535	10.72	22.00		G00 &
RW-5	1556	18,55	21.70		G008
RW-6	1620	13.77	22.12		400d
RW-7	1638	7.80	20.19		Good
SG-22-1	1048	1.28			Good
SG-22-2	1055	1.26			600d

Laboratory Services A CENTURY OF EXCELLENCE

Sonde ID	15H
Start Date	10.14.24
Project #	24-0857, -0858, -0859, -0860, -0861 -0862
Site	JHC
Reviewed By & Date:	V 10/23/24

Equipment Details	Model & S/N
Monitor Brand	YSI ProDSS S/N 19F104713
Sonde Brand	YSI ProDSS S/N 15H101425 262909-1
Flow Cell	EXO1 599080
DO Probe 96.9%	YSI ProDSS S/N 15G103714
Turbidity Probe	YSI ProDSS S/N 21H105795
pH With ORP	YSI ProDSS S/N 22D102306
Conductivity & Temperature Probe	YSI ProDSS S/N 22G103712

pH Standard (±0.1)	Source	Source Lot #	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3rd Daily Field Checks Completed	4 th Daily Filed Checks Completed	End Project Calibration Value
4.0	GFS # 1634	24003185	5.31.25	4.00	4.04	4.02			4.02
7.0	GFS # 1639	24012727	6.3.26	7.00	7.08	7.03			7.63
10.0	GFS # 1645	23660188	2.16.25	9.99	9.99	80.01			10.08
	1		nitials & Date:	KDR 10.11.24	10.14.20	um6			un 6

Is the same standard used for calibration and as-founds?

Are the calibration values within ±0.10 of the standard?

(N)(if no, document on pg. 2)

N (if no, recalibration is required)

ORP Standard (±10 mV)	Source	Source Lot #	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4th Daily Filed Checks Completed	End Project Calibration Value
†228.0 (mV)	GF) # 5525	24014269	5.3.25	t228.0	+227.5	+231.9			+231.9
		li li	nitials & Date:	10.11.24	10.14.24				10.19.24

Is the same standard used for calibration and as-founds?

Are the calibration values within ±10% of the standard?

or (N)(if no, document on pg. 2) N (if no, recalibration is required)

DO	Source	Source Lot #	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3rd Daily Field Checks Completed	4th Daily Filed Checks Completed	End Project Calibration Value
90-110% saturation	DI Water	N/A	N/A	96.9%	96.8%	97.0%			97.01
[- fl-			nitials & Date:	KDR	10.14.24	10.15.24			10.15.24

Is the same standard used for calibration and as-founds?

Are the calibration values within 90-110%?

N (if no, document on pg. 2) N (if no, recalibration is required)

Sonde ID	15H	Project #: 24-0857-0858,-0859,-0860,-0861
Start Date	10.14.24	-0862
Reviewed By & Date:	W/23/24	Site: THC

Specific Conductance (uS/cm)	Source	Source Lot #	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4th Daily Filed Checks Completed	End Project Calibration Value
1414 (1399-1427)	GF)# 2174	24012460	6.3.25	1414	1409	1403			1403
		In	itials & Date:	KDR 10.11.24	10.14.24	10.19.24			W. 15.2

• Is the same standard used for calibration and as-founds?

Are the calibration values within ±3% of the standard?

Y	or (N	Alt no,	document on pg. 2)
(Y)	or N	(if no,	recalibration is required)

Turbidity (NTUs)	Source	Source Lot#	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4th Daily Filed Checks Completed	End Project Calibration Value
0	DI Water	-		0.00	0.04	0.02			0.01
40.0 (±4.0 NTUs)	Hach 2746356	A3093	4.25	40.22	41.17	39.89			39.89
800.0 (±80.0 NTUs)	Hach 2660553	A3310	11.25	817.00	832.1	809.60			809.60
		In	itials & Date:	10.11.27	LO.14.24	16.19.24			10.18.2

Is the same standard used for calibration and as-founds?

Y or N (if no, document on pg. 2)
Y or N (if no, recalibration is required)

Are the calibration values within ±10% of the standard?

Additional Information for calibration standards

Standard	Source	Source Lot #	Source Exp. Date	Standard	Source	Source Lot #	Source Exp. Date
pH 4.0	GES 1634	24003185	5.31.25	pH 9.0			
pH 7.0	GES 1639	24003597	1.24.25	ORP	GFS 17782	24009578	11.25.24
pH 10.0	GFS 1645	24003158	5.28.25				
Sp. Conductivity	6FS 2174	2402460	6.3.25				
10.0 Turbidity							
40.0 Turbidity							

Laboratory Services

Sonde ID	21G
Start Date	10.14.24
Project#	24.0851, 0858, 0859, 0860, 0861, 0862
Site	JHC Q4 GW
Reviewed By & Date	V 10/22/24

Equipment Details	Model & S/N
Monitor Brand	YSI ProDSS S/N 21G102278
Sonde Brand	YSI ProDSS S/N 21G105848
Flow Cell	EXO1 599080
DO Probe (97.2)	YSI ProDSS S/N 21G101534
Turbidity Probe	YSI ProDSS S/N 21G101646
pH With ORP	YSI ProDSS S/N 21H101604
Conductivity & Temperature Probe	YSI ProDSS S/N 21G101888

pH Standard (± 0.1)	Source	Source Lot#	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4 th Daily Filed Checks Completed	End Project Calibration Value
4.0	GFS # 1634	24003185	5-31-25	4.00	3.97	4.01			4.01
7.0	GFS # 1639	24012727	6.3-26	7.00	7.01	7.02			7.00
10.0	GFS # 1645	23040188	2-16-25	10.00	10.01	10.02			10.01
			Initials & Date:	10.11.24	C1E 10-14-24	C16			CIE 10-15-2

Is the same standard used for calibration and as-founds?

or N (if no, document on pg. 2)

On N (if no, recalibration is required)

Are the calibration values within ±0.10 of the standard?

1st Daily Field Checks Completed 3rd Daily Field Checks Completed 4th Daily Filed Checks Completed 2nd Daily Field Checks Completed Pre -Project Calibration Value End Project Calibration Value ORP Source Source Exp. Date Source Standard Lot# (± 10mV) GPS +228.0 5.23.25 24014269 + 228.1 +2286 +228.1 +227.9 (mV) £5525 LMO CIE CIE CIE **Initials & Date:** 10.11.24 10.14.24 10.15.24 10.15.25

Is the same standard used for calibration and as-founds?

or N (if no, document on pg. 2)

Are the calibration values within ±10% of the standard?
 Y or N (if no, recalibration is required).

DO	Source	Source Lot#	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3rd Daily Field Checks Completed	4th Daily Filed Checks Completed	End Project Calibration Value
90-110% saturation	DI Water	N/A	N/A	94.9%	91.17.	97.01.			97.1%
			Initials & Date:	LMO 1011-24	10.14.24	Cle 10.15.24			10.15.24

Is the same standard used for calibration and as-founds?

Are the calibration values within 90-110%?

or N (if no, document on pg. 2)
or N (if no, recalibration is required)

Sonde ID	21G	Project #: 24 -0851, 0855, 0859, 0860
Start Date	10-14-24	0861, 0862
Reviewed	9-1	Site:
By & Date:	10/25/24	JHC Q4 GW

Specific Conductance (uS/cm)	Source	Source Lot #	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4th Daily Field Checks Completed	End Project Calibration Value
(1399-1427)	GFS #2174	2401260	6.3.25	1415	1417	1416			1415
			Initials & Date:	LM6 10.11.24	10.4.24	10.15.26	1		10-15-21

• Is the same standard used for calibration and as-founds?

Are the calibration values within range of the standard?

	Y		(N) (If no, document on pg. 2)	
(Y)	or	N (if no, recalibration is required)	

Turbidity (NTUs)	Source	Source Lot#	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4th Daily Field Checks Completed	End Project Calibration Value
0	DI Water	-		0.02	0.00	0.02			0.01
40.0 (± 4.0 NTUs)	Hach 2746356	A3093	04-2025	40.32	40.39	40.13			40.21
800.0 (± 80.0 NTUs)	Hach 2660553	A3310	11-2025	811.48		307.11 3			906.92
	1.0		Initials & Date:	LM6 10.11:24	CI€ 10·14·24	CLE-			CLE 10.15.21

Is the same standard used for calibration and as-founds?

or N (if no, document on pg. 2)
of the standard?

or N (if no, document on pg. 2)
or N (if no, recalibration is required)

Are the calibration values within ±10% of the standard?

Additional Information for calibration standards

Standard	Source	Source Lot #	Source Exp. Date	Standard	Source	Source Lot #	Source Exp. Date
pH 4.0				pH 9.0 Check			
pH 7.0				ORP			
pH 10.0							Ý
Sp. Conductivity	GFS 2174	240 2440	4.3.26				
40.0 Turbidity							
10.0 Turbidity							

Laboratory Services

Sonde ID	22J
Start Date	10.14.24
Project #	24-0857,-0858,-0859,-0860 -0861,-0862
Site	JHC
Reviewed By & Date	7 10/23/24

Equipment Details	Model & S/N
Monitor Brand	YSI ProDSS S/N 22L102214
Sonde Brand	YSI ProDSS S/N 22J103704
Flow Cell	EXO1 599080
DO Probe 97.2%	YSI ProDSS S/N 23B101266
Turbidity Probe	YSI ProDSS S/N 22K100049
oH With ORP	YSI ProDSS S/N 23A103253
Conductivity & Temperature Probe	YSI ProDSS S/N 23C105385

pH Standard (± 0.1)	Source	Source Lot#	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4 th Daily Filed Checks Completed	End Project Calibration Value
4.0	GFS # 1634	24003185	5.31.25	4.00	4.01				4.05
7.0	GFS # 1639	24012727	6.3.26	7.00	7.03				7.0le
10.0	GFS # 1645	24003156	5.28.25	10.00	9.98				9.95
	1	,	Initials & Date:	10.11.24	16.14.74				KDR 10.15.24

• Is the same standard used for calibration and as-founds?

Are the calibration values within ±0.10 of the standard?

or N (if no, document on pg. 2)

or N (if no, recalibration is required)

ORP Standard (± 10mV)	Source	Source Lot #	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4 th Daily Filed Checks Completed	End Project Calibration Value
+228.0 (mV)	GFS # 5525	24012255	3.1.25	228.0	233.4				226.0
			Initials & Date:	10:11:24	10.14.74				16.15.24

Is the same standard used for calibration and as-founds?

or N (if no, document on pg. 2)

Are the calibration values within ±10% of the standard? (Y) or N (if no, recalibration is required).

DO	Source	Source Lot#	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3rd Daily Field Checks Completed	4th Daily Filed Checks Completed	End Project Calibration Value
90-110% saturation	DI Water	N/A	N/A	97.28	97. 7				99.0
			Initials & Date:	KDR 10.11.24	KDR 10.14.24				10.15 24

Is the same standard used for calibration and as-founds?

Are the calibration values within 90-110%?

(Y) or N (if no, document on pg. 2)
(Y) or N (if no, recalibration is required)

Sonde ID	22J	Project #:
Start Date	10.14.24	24-0857,-0858,-0859,-0860
Reviewed By & Date:	10/23/24	Site: 5HC

Specific		Source	Source Exp.	roject ation ue	Field ks sted	Field ks	Field ks eted	y Field cks leted	roject ation ue
Conductance (uS/cm)	Source	Lot #	Date	Pre -Proj Calibrati Value	1st Daily Fiel Checks Completed	2 nd Daily Fie Checks Completed	3 rd Daily Fiel Checks Completed	4 th Daily Fiel Checks Completed	End Pr Calibr
1414 (1399-1427)	GF5# 2174	24012460	6.3.25	1414	1407				1406
			Initials & Date:	10.11.24	10.14.24				10.15.24

Is the same standard used for calibration and as-founds?

Are the calibration values within range of the standard?

(1)	or	N	(if no, document on pg. 2)
8	or	N	(if no, recalibration is required)

Turbidity (NTUs)	Source	Source Lot #	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4th Daily Field Checks Completed	End Project Calibration Value
0	DI Water			0.00	0.15				0.11
40.0 (± 4.0 NTUs)	Hach 2746356	A3093	4.25	40.00	40.81				41.69
800.0 (± 80.0 NTUs)	Hach 2660553	A3310	11.25	817.00	82692				831.14
			Initials & Date:	KDR 16.11.24	KDR 10.14.24				10.15.2

Is the same standard used for calibration and as-founds?

Are the calibration values within ±10% of the standard?

N (if no, document on pg. 2)
N (if no, recalibration is required)

Additional Information for calibration standards

Standard	Source	Source Lot#	Source Exp. Date	Standard	Source	Source Lot #	Source Exp. Date
pH 4.0			1	pH 9.0 Check			
pH 7.0				ORP			
pH 10.0							
Sp. Conductivity							
40.0 Turbidity							
10.0 Turbidity							

12

ANALYTICAL REPORT

PREPARED FOR

Attn: Emil Blaj Consumers Energy 135 W Trail Street Jackson, Michigan 49201

Generated 5/24/2024 11:58:24 AM

JOB DESCRIPTION

JH Campbell Background Wells

JOB NUMBER

160-53901-1

Eurofins St. Louis 13715 Rider Trail North Earth City MO 63045

Eurofins St. Louis

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

Authorization

Zhorda Ridenhower Generated
5/24/2024 11:58:24 AM

Authorized for release by Rhonda Ridenhower, Business Unit Manager Rhonda.Ridenhower@et.eurofinsus.com Designee for Micha Korrinhizer, Project Manager Micha.Korrinhizer@et.eurofinsus.com (314)298-8566 3

4

5

8

9

10

11

Client: Consumers Energy Project/Site: JH Campbell Background Wells Laboratory Job ID: 160-53901-1

Table of Contents

0
1
7
9
0
()

4

5

7

a

10

11

Case Narrative

Client: Consumers Energy

Project: JH Campbell Background Wells

Job ID: 160-53901-1 Eurofins St. Louis

CASE NARRATIVE

Client: Consumers Energy

Project: JH Campbell CCR Groundwater Testing

Report Number: 160-53901-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition, all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method.

Eurofins Environment Testing attests to the validity of the laboratory data generated by Eurofins facilities reported herein. All analyses performed by Eurofins Environment Testing facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins Environment Testing's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Calculations are performed before rounding to avoid round-off errors in calculated results.

Proper preservation was noted for the methods performed on these samples, unless otherwise detailed below.

All soil/sediment sample results for radiochemistry analyses are based upon sample as dried and disaggregated with the exception of tritium, carbon-14, and iodine-129 by gamma spectroscopy unless requested as wet weight by the client.

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative.

Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.

Reference the chain of custody and receipt report for any variations on receipt conditions.

This laboratory report is confidential and is intended for the sole use of Eurofins TestAmerica and its client.

Receipt

The samples were received on 4/26/2024 9:30 AM. Unless otherwise noted below, the samples arrived in good condition, and properly preserved. The temperature of the cooler at receipt time was 16.5°C.

Receipt Exceptions

The following sample was received at the laboratory without a sample collection time documented on the chain of custody: DUP-01 (160-53901-7). A time of 12:00am was used to log the samples.

Method 903.0 - Radium-226 (GFPC)

Samples JHC-MW-15023 (160-53901-1), JHC-MW-15024 (160-53901-2), JHC-MW-15025 (160-53901-3), JHC-MW-15026 (160-53901-4), JHC-MW-15027 (160-53901-5), JHC-MW-15028 (160-53901-6), DUP-01 (160-53901-7), FB-01 (160-53901-8) and EB-01 (160-53901-9) were analyzed for Radium-226 (GFPC). The samples were prepared on 4/29/2024 and analyzed on 5/23/2024.

Method 904.0 - Radium-228 (GFPC)

Samples JHC-MW-15023 (160-53901-1), JHC-MW-15024 (160-53901-2), JHC-MW-15025 (160-53901-3), JHC-MW-15026 (160-53901-4), JHC-MW-15027 (160-53901-5), JHC-MW-15028 (160-53901-6), DUP-01 (160-53901-7), FB-01 (160-53901-8) and EB-01 (160-53901-9) were analyzed for Radium-228 (GFPC). The samples were prepared on 4/29/2024 and analyzed on

Eurofins St. Louis

Page 4 of 20 5/24/2024

2

Job ID: 160-53901-1

A

5

6

8

9

10

11

Case Narrative

Client: Consumers Energy

Project: JH Campbell Background Wells

Job ID: 160-53901-1 (Continued)

Eurofins St. Louis

Job ID: 160-53901-1

5/21/2024.

Method Ra226_Ra228 - Combined Radium-226 and Radium-228

Samples JHC-MW-15023 (160-53901-1), JHC-MW-15024 (160-53901-2), JHC-MW-15025 (160-53901-3), JHC-MW-15026 (160-53901-4), JHC-MW-15027 (160-53901-5), JHC-MW-15028 (160-53901-6), DUP-01 (160-53901-7), FB-01 (160-53901-8) and EB-01 (160-53901-9) were analyzed for Combined Radium-226 and Radium-228. The samples were analyzed on 5/24/2024.

No analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins St. Louis

5/24/2024

Page 5 of 20

6

3

5

6

9

10

Form No. CA-C-WI-002, Rev. 4.23, dated 4/16/2019

Sinc 140 common 44F.	Chain of Custody Record
ģ	
13715 Rider Trail North	

& eurofins Environment Testing TestAmerica

	Project Manag	Project Manager: Emil Biaj						ON COO	
Close Contact	Email: Emil.Bla	Email: Emil.Blaj@cmsenergy.com		S	Site Contact:		Date:		i C
Ciletti Collidati	Tel/Fax: 517-788-5888	88-5888		۲	Lab Contact: Jayna Awalt		Carrier: UPS		3
Consumers Erlergy, Laboratory Controct	Ana	Analysis Turnaround Time	Time					Sampler: CELS	
33 W. Ifall Street	CALENDAR DAYS		✓ WORKING DAYS	S				For Lab Use Only.	_
Jackson, WI 49201	TAT if diffe	TAT if different from Below _22 days	ays		(Vyalk-III Clefft.	
11/-188-3888		2 weeks			۲.٤٥				
JH Campbell Back		1 week)6 A			ON SON	
Project #: 24-0278		2 days			(EP.				
P O # (PR24040552/PO4400121591)		1 day		avi1	977 WW				
Sample Identification	Sample Date	Sample Type (C=Comp. Time G=Grab)	Matrix	C # f. o Preserva	Perform Radium Radium			Sample Specific Notes:	fic Note
JHC-MW-15023	4/15/24	2016	GW	2 4	×				
JHC-MW-15024	4/15/24	1839	0W	2 4	× ×				
JHC-MW-15025	4/15/24	1820	GW	2	x x				
JHC-MW-15026	4/15/24	1651	GW	2	x x				
JHC-MW-15027	4/15/24	1732	GW	2	× × ×				
JHC-MW-15028	4/15/24	1514	GW	2	× × ×				
DUP-01	4/15/24	1	ΜĎ	2	× ×				
FB-01	4/15/24	2040	3	2	× × ×		160-53901 Chain of Custody	of Custody	
EB-01	4/15/24	2025	≯	2	× ×				
			-						
= 4-HNO3:	NO3: 5=NaOH: 6= Ot	Other							
Preservation Useu. 1-10c, 2-110, 5-1120, Preservation Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste?	Pleas	A Waste Codes for the sample in the	r the sam	ple in the	Sample Dispose	ıl (A fee may bı	e assessed if samples a	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	Ê
ction if the lab	ant Poison B		Unknown		Return to Client		✓ Disposal by Lab	Archive for Months	
Special Instructions/QC Requirements & Comments:									
Lean de Lean d					Coole	Cooler Temp. (°C): Obs'd:	bs'd: Corr'd:	Therm ID No.:	
Custody Seals Intact: Yes No Relinquished by:	Company:	Company:	1	Date/Time:	Received t	CPS		Date/Time:	
Relinquished by:	Company			Date/Time:	Received by:	Nother	MU Company:		0930
			E					Doto/Limb	

Login Sample Receipt Checklist

Client: Consumers Energy Job Number: 160-53901-1

Login Number: 53901 List Source: Eurofins St. Louis

List Number: 1

Creator: Worthington, Sierra M

Groutor. Worthington, Clorid in		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	Sample 7 had no time listed on the COC.
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

5

0

10

11

Definitions/Glossary

Client: Consumers Energy Job ID: 160-53901-1

Project/Site: JH Campbell Background Wells

Qualifiers

Rad

Qualifier **Qualifier Description**

Result is less than the sample detection limit.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

Percent Recovery %R **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Eurofins St. Louis

Page 8 of 20

Method Summary

Client: Consumers Energy

Project/Site: JH Campbell Background Wells

Method	Method Description	Protocol	Laboratory
903.0	Radium-226 (GFPC)	EPA	EET SL
904.0	Radium-228 (GFPC)	EPA	EET SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	EET SL
PrecSep_0	Preparation, Precipitate Separation	None	EET SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	EET SL

Protocol References:

EPA = US Environmental Protection Agency

None = None

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Job ID: 160-53901-1

3

4

7

8

9

10

Sample Summary

Client: Consumers Energy Project/Site: JH Campbell Background Wells

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
160-53901-1	JHC-MW-15023	Water	04/15/24 20:16	04/26/24 09:30
160-53901-2	JHC-MW-15024	Water	04/15/24 18:39	04/26/24 09:30
160-53901-3	JHC-MW-15025	Water	04/15/24 18:20	04/26/24 09:30
160-53901-4	JHC-MW-15026	Water	04/15/24 16:51	04/26/24 09:30
160-53901-5	JHC-MW-15027	Water	04/15/24 17:32	04/26/24 09:30
160-53901-6	JHC-MW-15028	Water	04/15/24 15:14	04/26/24 09:30
160-53901-7	DUP-01	Water	04/15/24 00:00	04/26/24 09:30
160-53901-8	FB-01	Water	04/15/24 20:40	04/26/24 09:30
160-53901-9	EB-01	Water	04/15/24 20:25	04/26/24 09:30

Job ID: 160-53901-1

Job ID: 160-53901-1

Client: Consumers Energy

Project/Site: JH Campbell Background Wells

Client Sample ID: JHC-MW-15023

Lab Sample ID: 160-53901-1

Matrix: Water

Date Collected: 04/15/24 20:16 Date Received: 04/26/24 09:30

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.143	U	0.119	0.120	1.00	0.171	pCi/L	04/29/24 08:51	05/23/24 09:48	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	84.8		30 - 110					04/29/24 08:51	05/23/24 09:48	1

Method: EPA 904 0 - Radium-228 (GEPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.421	U	0.375	0.377	1.00	0.591	pCi/L	04/29/24 08:55	05/21/24 12:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	84.8		30 - 110					04/29/24 08:55	05/21/24 12:26	1
Y Carrier	80.0		30 - 110					04/29/24 08:55	05/21/24 12:26	1

Method: TAL-STL Ra226 Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.564	U	0.393	0.396	5.00	0.591	pCi/L		05/24/24 07:51	1
+ 228										

Client Sample ID: JHC-MW-15024

Lab Sample ID: 160-53901-2 Date Collected: 04/15/24 18:39 **Matrix: Water** Date Received: 04/26/24 09:30

Method: FPA 903.0 - Radium-226 (GFPC)

		`	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0670	U	0.0916	0.0918	1.00	0.154	pCi/L	04/29/24 08:51	05/23/24 09:48	1
Carrier Ba Carrier	%Yield 79.2	Qualifier	20 - 110					Prepared 04/29/24 08:51	Analyzed 05/23/24 09:48	Dil Fac

Method: EPA 904.0 - Radium-228 (GFPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.280	U	0.390	0.391	1.00	0.656	pCi/L	04/29/24 08:55	05/21/24 12:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	79.2		30 - 110					04/29/24 08:55	05/21/24 12:26	1
Y Carrier	78.1		30 - 110					04/29/24 08:55	05/21/24 12:26	1

Eurofins St. Louis

Client: Consumers Energy

Project/Site: JH Campbell Background Wells

Client Sample ID: JHC-MW-15024

Date Collected: 04/15/24 18:39 Date Received: 04/26/24 09:30 Lab Sample ID: 160-53901-2

Matrix: Water

Job ID: 160-53901-1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

	_		Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.347	U	0.401	0.402	5.00	0.656	pCi/L		05/24/24 07:51	1

Client Sample ID: JHC-MW-15025

Date Collected: 04/15/24 18:20 Date Received: 04/26/24 09:30

Lab Sample ID: 160-53901-3

Matrix: Water

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.00989	U	0.0886	0.0886	1.00	0.183	pCi/L	04/29/24 08:51	05/23/24 09:48	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.1		30 - 110					04/29/24 08:51	05/23/24 09:48	1

Method: EPA 904	4.0 - Radium	-228 (GFP	C)							
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.597		0.392	0.396	1.00	0.581	pCi/L	04/29/24 08:55	05/21/24 12:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.1		30 - 110					04/29/24 08:55	05/21/24 12:26	1
Y Carrier	81.9		30 - 110					04/29/24 08:55	05/21/24 12:26	1

Method: TAL-STL R	a226_Ra	228 - Com	bined Radi	um-226 an	d Radiur	n-228				
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.607		0.402	0.406	5.00	0.581	pCi/L		05/24/24 07:51	1

Client Sample ID: JHC-MW-15026 Lab Sample ID: 160-53901-4 Date Collected: 04/15/24 16:51 **Matrix: Water**

Date Received: 04/26/24 09:30

Method: EPA 903.	0 - Radium	-226 (GFP	C)							
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0470	U	0.0828	0.0829	1.00	0.148	pCi/L	04/29/24 08:51	05/23/24 09:48	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	98.5		30 - 110					04/29/24 08:51	05/23/24 09:48	1

Client: Consumers Energy

Date Received: 04/26/24 09:30

Project/Site: JH Campbell Background Wells

Client Sample ID: JHC-MW-15026

Date Collected: 04/15/24 16:51

Lab Sample ID: 160-53901-4

Matrix: Water

		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.347	U	0.349	0.350	1.00	0.562	pCi/L	04/29/24 08:55	05/21/24 12:30	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	98.5		30 - 110					04/29/24 08:55	05/21/24 12:30	1
Y Carrier	81.9		30 - 110					04/29/24 08:55	05/21/24 12:30	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac	
Combined Radium 226	0.394	U	0.359	0.360	5.00	0.562 pCi/L		05/24/24 07:51	1	
+ 228										

Client Sample ID: JHC-MW-15027

Date Collected: 04/15/24 17:32 Date Received: 04/26/24 09:30 Lab Sample ID: 160-53901-5

Matrix: Water

Method: EPA 903.0 - Radium-226 (GFPC)

Welliou. EFA 30	o.u - Kaululli	-220 (GFF	U)							
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.206		0.146	0.148	1.00	0.203	pCi/L	04/29/24 08:51	05/23/24 10:05	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	81.7		30 - 110					04/29/24 08:51	05/23/24 10:05	1

Method: EPA 904.0 - Radium-228 (GFPC)

		·	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	1.03		0.461	0.471	1.00	0.597	pCi/L	04/29/24 08:55	05/21/24 12:30	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	81.7		30 - 110					04/29/24 08:55	05/21/24 12:30	1
Y Carrier	75.9		30 - 110					04/29/24 08:55	05/21/24 12:30	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	iotai					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.24		0.484	0.494	5.00	0.597 pCi/L		05/24/24 07:51	1
226 + 228									

Client Sample ID: JHC-MW-15028

Project/Site: JH Campbell Background Wells

Date Collected: 04/15/24 15:14 Date Received: 04/26/24 09:30

Client: Consumers Energy

Lab Sample ID: 160-53901-6

Matrix: Water

Method: EPA 903.0 - Radium-226	(GFPC)

			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0161	U	0.123	0.123	1.00	0.239	pCi/L	04/29/24 08:51	05/23/24 10:05	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	84.0		30 - 110					04/29/24 08:51	05/23/24 10:05	

Total

Count

Method: EPA 904.0 - Radium-228 (GFPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.0191	U	0.329	0.329	1.00	0.628	pCi/L	04/29/24 08:55	05/21/24 12:30	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	84.0		30 - 110					04/29/24 08:55	05/21/24 12:30	1
Y Carrier	76.6		30 - 110					04/29/24 08:55	05/21/24 12:30	1

Method: TAL-STL Ra226 Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	-0.00294	U	0.351	0.351	5.00	0.628	pCi/L		05/24/24 07:51	1
+ 228										

Client Sample ID: DUP-01

Date Collected: 04/15/24 00:00 Date Received: 04/26/24 09:30

Lab Sample ID: 160-53901-7

Matrix: Water

Mothod: EPA 903.0 - Radium-226 (GEPC)

Wethod: EPA 903	.u - Kaululli	-226 (GFP	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.143	U	0.118	0.119	1.00	0.324	pCi/L	04/29/24 08:51	05/23/24 10:05	1
Carrier Ba Carrier	%Yield 56.1	Qualifier	Limits 30 - 110					Prepared 04/29/24 08:51	Analyzed 05/23/24 10:05	Dil Fac

			D !! 000	(OEDO)
Method:	EPA	904.0 -	Radium-228	(GFPC)

motriou: El 7100-11	, itaaiaiii	220 (0	,	T-4-1						
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.634	U	0.564	0.567	1.00	0.888	pCi/L	04/29/24 08:55	05/21/24 12:30	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	56.1		30 - 110					04/29/24 08:55	05/21/24 12:30	1
Y Carrier	79.6		30 - 110					04/29/24 08:55	05/21/24 12:30	1

Job ID: 160-53901-1

Project/Site: JH Campbell Background Wells

Client Sample ID: DUP-01

Lab Sample ID: 160-53901-7 Date Collected: 04/15/24 00:00

Matrix: Water

Date Received: 04/26/24 09:30

Client: Consumers Energy

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

	_		Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.492	U	0.576	0.579	5.00	0.888	pCi/L		05/24/24 07:51	1

Client Sample ID: FB-01 Lab Sample ID: 160-53901-8

Date Collected: 04/15/24 20:40 **Matrix: Water**

Date Received: 04/26/24 09:30

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.467		0.173	0.178	1.00	0.166	pCi/L	04/29/24 08:51	05/23/24 10:05	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	98.2		30 - 110					04/29/24 08:51	05/23/24 10:05	1

Method: EPA 90		-228 (GFP	C)							
		•	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.211	U	0.310	0.311	1.00	0.525	pCi/L	04/29/24 08:55	05/21/24 12:31	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	98.2		30 - 110					04/29/24 08:55	05/21/24 12:31	1
Y Carrier	82.6		30 - 110					04/29/24 08:55	05/21/24 12:31	1

Method: TAL-STL F	Ra226_Ra	228 - Com	bined Radi	um-226 ar	nd Radiur	n-228				
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Padium	0.679		0.355	0.358	5.00	0.525	nCi/l		05/24/24 07:51	1

Client Sample ID: EB-01 Lab Sample ID: 160-53901-9 Date Collected: 04/15/24 20:25 **Matrix: Water**

Date Received: 04/26/24 09:30

226 + 228

Method: EPA 90	03.0 - Radium	-226 (GFP	C)							
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.113	U	0.111	0.111	1.00	0.170	pCi/L	04/29/24 08:51	05/23/24 10:05	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.2		30 - 110					04/29/24 08:51	05/23/24 10:05	1

Eurofins St. Louis

Client Sample Results

Client: Consumers Energy Job ID: 160-53901-1

Project/Site: JH Campbell Background Wells

Client Sample ID: EB-01 Lab Sample ID: 160-53901-9

Date Collected: 04/15/24 20:25

Date Received: 04/26/24 09:30

Matrix: Water

Method: EPA 90	4.0 - Radium	-228 (GFP	C)							
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0615	U	0.281	0.282	1.00	0.515	pCi/L	04/29/24 08:55	05/21/24 12:31	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.2		30 - 110					04/29/24 08:55	05/21/24 12:31	1
Y Carrier	79.6		30 - 110					04/29/24 08:55	05/21/24 12:31	1

Method: TAL-STL R	a226_Ra	228 - Com	bined Radi	um-226 an	d Radiur	n-228				
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.174	U	0.302	0.303	5.00	0.515	pCi/L		05/24/24 07:51	1

4.0

Client: Consumers Energy Job ID: 160-53901-1

Project/Site: JH Campbell Background Wells

Method: 903.0 - Radium-226 (GFPC)

Lab Sample ID: MB 160-659070/1-A

Lab Sample ID: LCS 160-659070/2-A

Matrix: Water

Analysis Batch: 662988

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 659070

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.1169 U 0.106 0.107 1.00 0.158 pCi/L 04/29/24 08:51 05/23/24 09:46

Total

MB

Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 94.4 30 - 110 04/29/24 08:51 05/23/24 09:46

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 659070

10

Analysis Batch: 662988

Total

LCS LCS %Rec **Spike** Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-226 11.3 10.90 1.25 1.00 0.239 pCi/L 96 75 - 125

Count

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 92.1 30 - 110

Lab Sample ID: 160-53902-A-4-A DU **Client Sample ID: Duplicate**

Matrix: Water

Matrix: Water

Analysis Batch: 663009

Prep Type: Total/NA

Prep Batch: 659070

Total

Sample Sample DU DU **RER** Uncert. Analyte Result Qual $(2\sigma + / -)$ RL **MDC** Unit Result Qual RER Limit 0.04134 U Radium-226 0.257 0.123 1.00 0.229 pCi/L 0.82

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 89.8 30 - 110

Method: 904.0 - Radium-228 (GFPC)

Lab Sample ID: MB 160-659071/1-A

Matrix: Water

Analysis Batch: 662590

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 659071 Count Total

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$

RL **MDC** Unit Prepared Dil Fac Analyzed Radium-228 0.05926 Ū 0.289 0.289 1.00 0.530 pCi/L 04/29/24 08:55 05/21/24 12:25

> MB MB

Carrier %Yield Qualifier Limits Prepared Dil Fac Analyzed Ba Carrier 94.4 30 - 110 04/29/24 08:55 05/21/24 12:25 30 - 110 Y Carrier 78.1 04/29/24 08:55 05/21/24 12:25

Eurofins St. Louis

QC Sample Results

Client: Consumers Energy Job ID: 160-53901-1

Project/Site: JH Campbell Background Wells

Method: 904.0 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCS 160-659071/2-A **Matrix: Water**

Analysis Batch: 662590

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 659071

Total LCS LCS %Rec Spike Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL**MDC** Unit %Rec Limits Radium-228 8.92 10.40 1.42 1.00 0.584 pCi/L 117 75 - 125

LCS LCS

%Yield Qualifier Carrier Limits Ba Carrier 92.1 30 - 110 Y Carrier 78.9 30 - 110

Lab Sample ID: 160-53902-A-4-B DU

Matrix: Water

Analysis Batch: 662590

Client Sample ID: Duplicate

Prep Type: Total/NA

Prep Batch: 659071

Total

Sample Sample DU DU Uncert. **RER** Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-228 0.4943 U 1.00 0.655 pCi/L 0.54 0.998 0.423

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 30 - 110 89.8 80.0 30 - 110 Y Carrier

QC Association Summary

Client: Consumers Energy Project/Site: JH Campbell Background Wells

Prep Batch: 659070

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-53901-1	JHC-MW-15023	Total/NA	Water	PrecSep-21	
160-53901-2	JHC-MW-15024	Total/NA	Water	PrecSep-21	
160-53901-3	JHC-MW-15025	Total/NA	Water	PrecSep-21	
160-53901-4	JHC-MW-15026	Total/NA	Water	PrecSep-21	
160-53901-5	JHC-MW-15027	Total/NA	Water	PrecSep-21	
160-53901-6	JHC-MW-15028	Total/NA	Water	PrecSep-21	
160-53901-7	DUP-01	Total/NA	Water	PrecSep-21	
160-53901-8	FB-01	Total/NA	Water	PrecSep-21	
160-53901-9	EB-01	Total/NA	Water	PrecSep-21	
MB 160-659070/1-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-659070/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
160-53902-A-4-A DU	Duplicate	Total/NA	Water	PrecSep-21	

Prep Batch: 659071

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-53901-1	JHC-MW-15023	Total/NA	Water	PrecSep_0	
160-53901-2	JHC-MW-15024	Total/NA	Water	PrecSep_0	
160-53901-3	JHC-MW-15025	Total/NA	Water	PrecSep_0	
160-53901-4	JHC-MW-15026	Total/NA	Water	PrecSep_0	
160-53901-5	JHC-MW-15027	Total/NA	Water	PrecSep_0	
160-53901-6	JHC-MW-15028	Total/NA	Water	PrecSep_0	
160-53901-7	DUP-01	Total/NA	Water	PrecSep_0	
160-53901-8	FB-01	Total/NA	Water	PrecSep_0	
160-53901-9	EB-01	Total/NA	Water	PrecSep_0	
MB 160-659071/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-659071/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
160-53902-A-4-B DU	Duplicate	Total/NA	Water	PrecSep 0	

Job ID: 160-53901-1

Tracer/Carrier Summary

Client: Consumers Energy

Project/Site: JH Campbell Background Wells

Job ID: 160-53901-1

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

			Percent Yield (Acceptance Limits)
		Ва	
Lab Sample ID	Client Sample ID	(30-110)	
160-53901-1	JHC-MW-15023	84.8	
160-53901-2	JHC-MW-15024	79.2	
160-53901-3	JHC-MW-15025	87.1	
160-53901-4	JHC-MW-15026	98.5	
160-53901-5	JHC-MW-15027	81.7	
160-53901-6	JHC-MW-15028	84.0	
160-53901-7	DUP-01	56.1	
160-53901-8	FB-01	98.2	
160-53901-9	EB-01	97.2	
160-53902-A-4-A DU	Duplicate	89.8	
LCS 160-659070/2-A	Lab Control Sample	92.1	
	Method Blank	94.4	

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water Prep Type: Total/NA

				Percent Yield (Acceptance Limits)
		Ва	Υ	
Lab Sample ID	Client Sample ID	(30-110)	(30-110)	
160-53901-1	JHC-MW-15023	84.8	80.0	
160-53901-2	JHC-MW-15024	79.2	78.1	
160-53901-3	JHC-MW-15025	87.1	81.9	
160-53901-4	JHC-MW-15026	98.5	81.9	
160-53901-5	JHC-MW-15027	81.7	75.9	
160-53901-6	JHC-MW-15028	84.0	76.6	
160-53901-7	DUP-01	56.1	79.6	
160-53901-8	FB-01	98.2	82.6	
160-53901-9	EB-01	97.2	79.6	
160-53902-A-4-B DU	Duplicate	89.8	80.0	
LCS 160-659071/2-A	Lab Control Sample	92.1	78.9	
MB 160-659071/1-A	Method Blank	94.4	78.1	

Ba = Ba Carrier Y = Y Carrier

Page 20 of 20

5/24/2024

12

ANALYTICAL REPORT

PREPARED FOR

Attn: Emil Blaj Consumers Energy 135 W Trail Street Jackson, Michigan 49201

Generated 6/24/2024 5:56:47 PM

JOB DESCRIPTION

JH Campbell Pond A Wells

JOB NUMBER

160-53903-1

Eurofins St. Louis 13715 Rider Trail North Earth City MO 63045

Eurofins St. Louis

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

Authorization

michakonuning 6/24/2024 5:56:47 PM

Authorized for release by Micha Korrinhizer, Project Manager Micha.Korrinhizer@et.eurofinsus.com (314)298-8566

Client: Consumers Energy Project/Site: JH Campbell Pond A Wells Laboratory Job ID: 160-53903-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Chain of Custody	6
Receipt Checklists	8
Definitions/Glossary	9
Method Summary	10
Sample Summary	11
Client Sample Results	12
QC Sample Results	17
QC Association Summary	20
Tracer Carrier Summary	21

6

4

5

7

10

11

Case Narrative

Client: Consumers Energy Job ID: 160-53903-1 Project: JH Campbell Pond A Wells

Job ID: 160-53903-1 Eurofins St. Louis

CASE NARRATIVE

Client: Consumers Energy

Project: JH Campbell CCR Groundwater Testing

Report Number: 160-53903-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition, all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method.

Eurofins Environment Testing attests to the validity of the laboratory data generated by Eurofins facilities reported herein. All analyses performed by Eurofins Environment Testing facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins Environment Testing's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Calculations are performed before rounding to avoid round-off errors in calculated results.

Proper preservation was noted for the methods performed on these samples, unless otherwise detailed below.

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative.

Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

The matrix for the Method Blank and LCS/LCSD is as close to the samples as can be reasonably achieved. Detailed information can be found in the most current revision of the associated SOP.

The method blank (MB) z-score is within limits, unless stated otherwise below, and is stored in the level IV raw data.

This laboratory report is confidential and is intended for the sole use of Eurofins Environment Testing and its client.

No additional analytical or quality issues were noted, other than those described below or in the Definitions/ Glossary page.

Receipt

The samples were received on 4/26/2024 9:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved. The temperature of the cooler at receipt time was 16.1°C.

Receipt Exceptions

The following sample was received at the laboratory without a sample collection time documented on the chain of custody: DUP-02 (160-53903-6). A time of 12:00am was used to log the sample.

Method 903.0 - Radium-226 (GFPC)

Samples JHC-MW-15006 (160-53903-1), JHC-MW-15007R (160-53903-2), JHC-MW-15008R (160-53903-3), JHC-MW-15009R (160-53903-4), JHC-MW-15011R (160-53903-5), DUP-02 (160-53903-6), FB-02 (160-53903-7) and EB-02 (160-53903-8) were analyzed for Radium-226 (GFPC). The samples were prepared on 4/30/2024 and 5/29/2024 and analyzed on 5/26/2024 and 6/21/2024.

The laboratory control sample (LCS) associated with the following samples in batch 160-659257 was inadvertently not spiked and therefore recovered outside acceptance limits: JHC-MW-15008R (160-53903-3), (LCS 160-659257/2-A), (MB 160-659257/1-A) and (160-53903-A-3-A DU). There was insufficient sample to perform a re-extraction or re-analysis. The client was informed of the discrepancy and requested the data be flagged and reported.

Method 904.0 - Radium-228 (GFPC)

Samples JHC-MW-15006 (160-53903-1), JHC-MW-15007R (160-53903-2), JHC-MW-15008R (160-53903-3), JHC-MW-15009R (160-53903-4), JHC-MW-15011R (160-53903-5), DUP-02 (160-53903-6), FB-02 (160-53903-7) and EB-02 (160-53903-8) were

Eurofins St. Louis

Page 4 of 21 6/24/2024

Case Narrative

Client: Consumers Energy

Project: JH Campbell Pond A Wells

Job ID: 160-53903-1 (Continued)

Eurofins St. Louis

Job ID: 160-53903-1

analyzed for Radium-228 (GFPC). The samples were prepared on 4/30/2024 and analyzed on 5/23/2024.

The laboratory control sample (LCS) associated with the following samples in batch 160-659258 recovered at 126%: JHC-MW-15006 (160-53903-1), JHC-MW-15007R (160-53903-2), JHC-MW-15008R (160-53903-3), JHC-MW-15009R (160-53903-4), JHC-MW-15011R (160-53903-5), DUP-02 (160-53903-6), FB-02 (160-53903-7) and EB-02 (160-53903-8). The limits in our LIMS system are 75-125%, which reflect the requirements of a regulatory agency that represents a large amount of our work. However, the samples associated with this LCS are not from this agency and are therefore held to our in-house statistical limits of (69-145%) The LCS is within criteria and no further action is required.

Method Ra226_Ra228 - Combined Radium-226 and Radium-228

Samples JHC-MW-15006 (160-53903-1), JHC-MW-15007R (160-53903-2), JHC-MW-15008R (160-53903-3), JHC-MW-15009R (160-53903-4), JHC-MW-15011R (160-53903-5), DUP-02 (160-53903-6), FB-02 (160-53903-7) and EB-02 (160-53903-8) were analyzed for Combined Radium-226 and Radium-228. The samples were analyzed on 6/24/2024.

Eurofins St. Louis

Page 5 of 21 6/24/2024

FORM NO CA C MILONO Day 4 00 Jake & stantones

Chain of Custody Record

Ē

eurofins | Environment Testing

COCs

ď

Eurofins TestAmerica, St. Louis 13715 Rider Trail North

TestAmerica Laboratories, Inc. d/b/a Eurofins TestAmerica For Lab Use Only: Sampler: CELS Walk-in Client: ab Sampling: Job / SDG No. SOC No 160-53903 Chain of Custody Date: Site Contact: Bethany Swanberg Other: Lab Contact: Emil Blaj ✓ RCRA Radium 228 (EPA 904.0) × × Radium 226 (EPA 903.1) × × × Perform MS / MSD (Y / N) Preservative 4 4 4 4 4 ☐ NPDES # of Cont. 7 2 7 7 7 \sim 7 7 WORKING DAYS Matrix ĞΜ βM GW βN βW GW ≥ ≥ Regulatory Program: Dw Analysis Turnaround Time TAT if different from Below ___22__ Type (C=Comp, G=Grab) Email: Emil.Blaj@cmsenergy.com Sample Project Manager: Emil Blaj 2 weeks 1 week 2 days 1 day Tel/Fax: 517-788-5888 Sample 1736 1641 1929 Time 1541 1421 1856 1921 ✓ CALENDAR DAYS 04/16/24 04/16/24 04/16/24 04/16/24 04/16/24 04/16/24 04/16/24 04/16/24 Sample Date Sample Identification (xxx) xxx-xxxx
Project Name: JH Campbell Pond A Wells Consumers Energy, Laboratory Services JHC-MW-15011R JHC-MW-15007R JHC-MW-15008R JHC-MW-15009R Earth City, MO 63045-1205 phone 314.298.8566 fax 314.298.8757 Client Contact JHC-MW-15006 O # (PR24040552/PO4400121591) DUP-02 FB-02 EB-02 135 W. Trail Street Jackson, MI 49201 Project #: 24-0279 517-788-5888

Sample Specific Notes:

Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= (3; 5=NaOH; 6= Other					
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.	ase List any EPA Waste Codes for the		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	sed if samples are retaine	d longer than 1 mor	ıth)
✓ Non-Hazard Flammable Skin Irritant	Poison B Unknown	IWI	Return to Client Disposal by Jah	Lah	Stroom	
Custody Seals Infact: Yes No	Clebrate Coal No.					
indot:	ō		Cooler Lemp. ("C): Obs'd:	Corr'd:	Therm ID No.:	
Keiinquished by:	Company: Com		Received by: UPS	Company:	Date/Time:	
Relinquished by:	Company:	Date/Time:	Received by Watthe Att Company		Date/Time 70	Cesso
Relinquished by:	Company:	Date/Time:	Received in Laboratory by:			3

Chain of Custody Record

eurofins Environment Testing

uis		
Eurofins TestAmerica, St. Louis	13715 Rider Trail North	Earth City, MO 63045-1205

Earth City, MO 63045-1205 phone 314.298.8566 fax 314.298.8757	Regn	Regulatory Program:		MQ	NPDES		√ RCRA	Other:	TestAmerica	lestAmerica TestAmerica ahoratories Inc. dih/s Eurofine TestAmeri
	Project Manager:	nager: Em	Emil Blaj		Γ					
Client Contact	Email: Emil. Blaj@cmsenergy.com	Blaj@cmser	nergy.com			Site Contact:	ontac	t: Bethany Swanberg	Date:	COC No:
Consumers Energy, Laboratory Services	Tel/Fax: 51	7-788-5888				Lab C	ontac	Lab Contact: Emil Blaj	Carrier:	1 of 1 COCs
135 W. Trail Street	/	Analysis Turnaround Time	rnaround 1	ime			\vdash			
Jackson, MI 49201	✓ CALENDAR DAYS	AR DAYS	WOR	WORKING DAYS						For Lah Use Only:
517-788-5888	TAT if	if different from Below	1 Below 22			(N				Walk-in Client
(xxx) xxx-xxxx FAX		2 w					_			ab Sampling:
Project Name: JH Campbell Pond A Wells		1 %	1 week		-	_				רמם כפווהם.
Project #: 24-0279		2 0	2 days			_				
P O # (PR24040552/PO4400121591)		1 day	ay			N/S				JOB / SDG NO.
Sample Identification	Sample	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Preservati Perform M	S2 muibeЯ S2 muibeЯ			Samula Specific Notes
JHC-MW-15006	04/16/24	1736		GW	7	4	×			
JHC-MW-15007R	04/16/24	1641		GW	2	4	×			
JHC-MW-15008R	04/16/24	1541		GW	2	4	×			
JHC-MW-15009R	04/16/24	1421		GW	2	4	×			
JHC-MW-15011R	04/16/24	1856		GW	2	4	×			
DUP-02	04/16/24	1		QW.	2	4	×			
FB-02	04/16/24	1921		3	2	4	×			
EB-02	04/16/24	1929		8	2	4	×		160-53903 Chain of Custody	ustody
							_			
							_			
							-			
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6=	, 5=NaOH; 6=	Other								
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Pleas Comments Section if the lab is to dispose of the sample.	Please List any EP	A Waste C	A Waste Codes for the sample in the	sample	in the	San	ple D	Jisposal (A fee may be	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ained longer than 1 month)
✓ Non-Hazard Flammable Skin Irritant	Poison B		Unknown	r,		_	Retur	Return to Client	Usposal by Lab	Monthe
Special Instructions/QC Requirements & Comments:										

Form No. CA-C-WI-002 Rev 4 23 dated 4118120110

02/30

Date/Time: Date/Time:

Company:

Received by: Worthy are Received in Laboratory by:

Date/Time:

Company:

6/24/2024

Relinquished by:

Therm ID No.: Date/Time:

Company:

| Cooler Temp. (°C): Obs'd: | Received by:

UPS

Company:
Consony:
Consony:
Conson Else Energy | Date/Time:
Consony:
Date/Time:

Yes

Custody Seals Intact: Relinquished by:

Login Sample Receipt Checklist

Client: Consumers Energy Job Number: 160-53903-1

Login Number: 53903 List Source: Eurofins St. Louis

List Number: 1

Creator: Worthington, Sierra M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	Sample 6 has no time listed on the COC.
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	Sample 6 preserved upon arrival
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

9

6

8

10

11

Definitions/Glossary

Client: Consumers Energy Job ID: 160-53903-1

Project/Site: JH Campbell Pond A Wells

Qualifiers

Rad
Qualifier

4	aumino. Bood. priori		
*	LCS or LCSD is outside acceptance limits.		

Qualifier Description

J Result is less than the sample detection limit.

Glossary

Abbreviation These commonly used abbreviations may or may i	not be present in this report.
---	--------------------------------

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins St. Louis

Page 9 of 21 6/24/2024

Method Summary

Client: Consumers Energy

Project/Site: JH Campbell Pond A Wells

Laboratory Method **Method Description** Protocol 903.0 Radium-226 (GFPC) EPA EET SL Radium-228 (GFPC) EPA 904.0 **EET SL** Ra226_Ra228 Combined Radium-226 and Radium-228 TAL-STL EET SL PrecSep_0 Preparation, Precipitate Separation None EET SL PrecSep-21 Preparation, Precipitate Separation (21-Day In-Growth) None EET SL

Protocol References:

EPA = US Environmental Protection Agency

None = None

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Job ID: 160-53903-1

3

4

5

_

8

9

10

11

Sample Summary

Client: Consumers Energy Project/Site: JH Campbell Pond A Wells

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
160-53903-1	JHC-MW-15006	Water	04/16/24 17:36	04/26/24 09:30
160-53903-2	JHC-MW-15007R	Water	04/16/24 16:41	04/26/24 09:30
160-53903-3	JHC-MW-15008R	Water	04/16/24 15:41	04/26/24 09:30
160-53903-4	JHC-MW-15009R	Water	04/16/24 14:21	04/26/24 09:30
160-53903-5	JHC-MW-15011R	Water	04/16/24 18:56	04/26/24 09:30
160-53903-6	DUP-02	Water	04/16/24 00:00	04/26/24 09:30
160-53903-7	FB-02	Water	04/16/24 19:21	04/26/24 09:30
160-53903-8	EB-02	Water	04/16/24 19:29	04/26/24 09:30

Job ID: 160-53903-1

Job ID: 160-53903-1

Client: Consumers Energy Project/Site: JH Campbell Pond A Wells

Client Sample ID: JHC-MW-15006

Date Collected: 04/16/24 17:36 Date Received: 04/26/24 09:30

Lab Sample ID: 160-53903-1

Matrix: Water

Method: EPA 903.0 - Radium-226	(GFPC)

Analyte Radium-226	Result 0.161	Qualifier	Uncert. (2σ+/-) 0.0776	Uncert. (2σ+/-) 0.0790	RL 1.00	MDC 0.0836	 Prepared 05/29/24 08:48	Analyzed 06/21/24 09:59	Dil Fac
Carrier	%Yield	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Ba Carrier 81.5 30 - 110 05/29/24 08:48 06/21/24 09:59

Total

Count

Method: EPA 904.0 - Radium-228 (GFPC)

Analyte	Rosult	Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analvzed	Dil Fac
Allalyte		Qualifier	(20:1-)	(20:1-)		IVIDO	Oilit	i repared	Allalyzeu	Diriac
Radium-228	0.0288	U	0.279	0.279	1.00	0.517	pCi/L	04/30/24 08:07	05/23/24 12:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	93.9		30 - 110					04/30/24 08:07	05/23/24 12:11	1
Y Carrier	84.5		30 - 110					04/30/24 08:07	05/23/24 12:11	1

Method: TAL-STL Ra226 Ra228 - Combined Radium-226 and Radium-228

	_		Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.190	U	0.290	0.290	5.00	0.517	pCi/L		06/24/24 16:53	1

Client Sample ID: JHC-MW-15007R

Date Collected: 04/16/24 16:41 Date Received: 04/26/24 09:30

Lab Sample ID: 160-53903-2

Matrix: Water

Method: EPA 903.0 - Radium-226 (GEPC)

Wethod: EPA 90.	oio itaaiaiii	220 (0.1	Count Uncert.	Total Uncert.					08:48 06/21/24 09:59	
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.393		0.107	0.113	1.00	0.0700	pCi/L	05/29/24 08:48	06/21/24 09:59	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.8		30 - 110					05/29/24 08:48	06/21/24 09:59	1

Mothod:		Dadium 220	(CEDC)
Metriou.	EFA 304.0	- Radium-228	IGEFUI

- Kaululli	-220 (GFP	U)							
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.531	U	0.469	0.471	1.00	0.747	pCi/L	04/30/24 08:07	05/23/24 12:11	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
90.6		30 - 110					04/30/24 08:07	05/23/24 12:11	1
79.3		30 - 110					04/30/24 08:07	05/23/24 12:11	1
	Result 0.531 % Yield 90.6	Result Qualifier	Result 0.531 Qualifier Qualifier Qualifier (2σ+/-) 0.469 %Yield Qualifier 90.6 Qualifier Limits 30 - 110	Result 0.531 Qualifier Uncert. (2σ+/-) (2σ+/-) (2σ+/-) %Yield 90.6 Qualifier Limits 30 - 110 30 - 110	Count Uncert. Uncert. Uncert.	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Count Uncert. Cou	Count Uncert. Uncert. Uncert. Count Uncer	Count Uncert. Uncert.

Client Sample ID: JHC-MW-15007R

Date Collected: 04/16/24 16:41 Date Received: 04/26/24 09:30

%Yield Qualifier

99.7

Lab Sample ID: 160-53903-2

Prepared

04/30/24 08:03 05/26/24 13:35

Analyzed

Dil Fac

Matrix: Water

Job ID: 160-53903-1

Method: TAL-STL Ra226 Ra228 - Combined Radium-226 and Radium-228

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.925		0.481	0.484	5.00	0.747	pCi/L		06/24/24 16:53	1

Client Sample ID: JHC-MW-15008R

Lab Sample ID: 160-53903-3 Date Collected: 04/16/24 15:41 **Matrix: Water**

Date Received: 04/26/24 09:30

Carrier

Ba Carrier

Method: EPA 903.0 - Radium-226 (GFPC) Count Total Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.0977 U* 0.124 0.124 1.00 0.205 pCi/L 04/30/24 08:03 05/26/24 13:35

Method: EPA 904.0 - Radium-228 (GFPC) Count Total Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-228 04/30/24 08:07 05/23/24 12:07 0.450 U 0.339 0.342 1.00 0.522 pCi/L Limits Carrier **%Yield Qualifier** Prepared Analyzed Dil Fac Ba Carrier 99.7 30 - 110 04/30/24 08:07 05/23/24 12:07 Y Carrier 83.4 30 - 110 04/30/24 08:07 05/23/24 12:07

Method: TAL-STL Ra226 Ra228 - Combined Radium-226 and Radium-228

Limits

30 - 110

motiloa: I/tE of E1	\u \u.		billou itaui	ann zzo an	a i taaiai					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC U	nit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.548		0.361	0.364	5.00	0.522 pC	Ci/L		06/24/24 16:53	1

Client Sample ID: JHC-MW-15009R Lab Sample ID: 160-53903-4 Date Collected: 04/16/24 14:21 **Matrix: Water**

Date Received: 04/26/24 09:30

Method: EPA 903.0 - Radium-226 (GFPC) Count Total Uncert. Uncert. Result Qualifier Analyte $(2\sigma + / -)$ $(2\sigma + / -)$ **MDC** Unit RL Prepared Analyzed Dil Fac 05/29/24 08:48 06/21/24 09:59 Radium-226 0.255 0.0937 0.0965 1.00 0.0887 pCi/L %Yield Qualifier Limits Carrier Prepared Analyzed Dil Fac Ba Carrier 86.8 30 - 110 05/29/24 08:48 06/21/24 09:59

Job ID: 160-53903-1

Client: Consumers Energy Project/Site: JH Campbell Pond A Wells

Client Sample ID: JHC-MW-15009R

Date Collected: 04/16/24 14:21 Date Received: 04/26/24 09:30 Lab Sample ID: 160-53903-4

Matrix: Water

Method: EPA	904.0 -	Radium-228	(GFPC)

motilod. El A 504.		(Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.849		0.445	0.452	1.00	0.633	pCi/L	04/30/24 08:07	05/23/24 12:08	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	84.8		30 - 110					04/30/24 08:07	05/23/24 12:08	1
Y Carrier	83.4		30 - 110					04/30/24 08:07	05/23/24 12:08	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

	_		Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.10		0.455	0.462	5.00	0.633	pCi/L		06/24/24 16:53	1

Client Sample ID: JHC-MW-15011R

Date Collected: 04/16/24 18:56 Date Received: 04/26/24 09:30

Lab Sample ID: 160-53903-5 **Matrix: Water**

Method: EPA 90	3.0 - Radium	-226 (GFP	C)							
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.277		0.101	0.104	1.00	0.0999	pCi/L	05/29/24 08:48	06/21/24 09:59	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	82.5		30 - 110					05/29/24 08:48	06/21/24 09:59	1

		·	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.398	U	0.373	0.375	1.00	0.594	pCi/L	04/30/24 08:07	05/23/24 12:08	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	86.8		30 - 110					04/30/24 08:07	05/23/24 12:08	1
Y Carrier	81.1		30 - 110					04/30/24 08:07	05/23/24 12:08	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	iotai						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.674		0.386	0.389	5.00	0.594	pCi/L		06/24/24 16:53	1
226 + 228										

6/24/2024

Job ID: 160-53903-1

Client: Consumers Energy

Project/Site: JH Campbell Pond A Wells

Client Sample ID: DUP-02 Lab Sample ID: 160-53903-6 Date Collected: 04/16/24 00:00

Matrix: Water

Date Received: 04/26/24 09:30

Method: EPA 903	3.0 - Radium	-226 (GFP	C)							
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.280		0.0977	0.101	1.00	0.0892	pCi/L	05/29/24 08:48	06/21/24 09:59	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	86.8		30 - 110					05/29/24 08:48	06/21/24 09:59	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.293	U	0.356	0.357	1.00	0.589	pCi/L	04/30/24 08:07	05/23/24 12:08	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	82.2		30 - 110					04/30/24 08:07	05/23/24 12:08	1
Y Carrier	83.4		30 - 110					04/30/24 08:07	05/23/24 12:08	1

Method: TAL-STL R	a226_Ra	228 - Com	nbined Radi	um-226 a	nd Radiui	m-228				
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.573	U	0.369	0.371	5.00	0.589	pCi/L	 :	06/24/24 16:53	1
+ 228										

Client Sample ID: FB-02 Lab Sample ID: 160-53903-7 Date Collected: 04/16/24 19:21 **Matrix: Water** Date Received: 04/26/24 09:30

Method: EPA 90	3.0 - Radium	-226 (GFP	C)							
		`	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.00801	U	0.0507	0.0507	1.00	0.111	pCi/L	05/29/24 08:48	06/21/24 10:00	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	73.0		30 - 110					05/29/24 08:48	06/21/24 10:00	1

Method: EPA 90	4.0 - Radium	-228 (GFP	FPC)							
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.0229	U	0.288	0.288	1.00	0.549	pCi/L	04/30/24 08:07	05/23/24 12:08	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	92.1		30 - 110					04/30/24 08:07	05/23/24 12:08	1
Y Carrier	83.0		30 - 110					04/30/24 08:07	05/23/24 12:08	1

6/24/2024

Client Sample Results

Client: Consumers Energy Job ID: 160-53903-1

Project/Site: JH Campbell Pond A Wells

Client Sample ID: FB-02 Lab Sample ID: 160-53903-7

Date Collected: 04/16/24 19:21 Matrix: Water Date Received: 04/26/24 09:30

Method: TAL-STL Ra226_	Ra228 - Combined Radium	-226 and Radium-228
	A	T.4.1

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	-0.0309	U	0.292	0.292	5.00	0.549	pCi/L		06/24/24 16:53	1

Client Sample ID: EB-02 Lab Sample ID: 160-53903-8

Date Collected: 04/16/24 19:29

Date Received: 04/26/24 09:30

Matrix: Water

Method: EPA 903.0 - Radium-226 (GFPC) Count Total Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.0365 U 0.0466 0.0468 1.00 0.0765 pCi/L 05/29/24 08:48 06/21/24 10:00

Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-228 0.236 U 04/30/24 08:07 05/23/24 12:08 0.350 0.351 1.00 0.591 pCi/L Carrier **%Yield Qualifier** Limits Prepared Analyzed Dil Fac Ba Carrier 94.4 30 - 110 04/30/24 08:07 05/23/24 12:08 30 - 110 Y Carrier 80.0 04/30/24 08:07 05/23/24 12:08

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

	_		Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	d Analyzed	Dil Fac
Combined Radium 226	0.272	U	0.353	0.354	5.00	0.591	pCi/L		06/24/24 16:53	1

+ 228

Client: Consumers Energy Job ID: 160-53903-1

Project/Site: JH Campbell Pond A Wells

Method: 903.0 - Radium-226 (GFPC)

Lab Sample ID: MB 160-659257/1-A

Matrix: Water

Analysis Batch: 663394

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 659257

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.06579 Ū 0.0846 0.0848 1.00 0.140 pCi/L 04/30/24 08:03 05/26/24 13:34

Total

MB

Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 92.9 30 - 110 04/30/24 08:03 05/26/24 13:34

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 659257

Lab Sample ID: LCS 160-659257/2-A **Matrix: Water**

Analysis Batch: 663394

Total LCS LCS %Rec **Spike** Uncert. Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits

Analyte Radium-226 11.3 0.4350 0.171 1.00 0.179 pCi/L 75 - 125

Count

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 96.4 30 - 110

Lab Sample ID: 160-53903-3 DU Client Sample ID: JHC-MW-15008R

Matrix: Water

Analysis Batch: 663394

Prep Type: Total/NA Prep Batch: 659257 Total

Sample Sample DU DU Uncert. **RER** Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit 0.0977 U * Radium-226 0.2019 0.138 1.00 0.195 pCi/L 0.40

DU DU Carrier %Yield Qualifier Limits Ba Carrier 96.7 30 - 110

Lab Sample ID: MB 160-663644/1-A Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA **Analysis Batch: 667323 Prep Batch: 663644**

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.08497 U 0.0640 0.0644 1.00 0.0883 pCi/L 05/29/24 08:48 06/21/24 09:56

MΒ MB

Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 82.8 30 - 110 05/29/24 08:48 06/21/24 09:56

Analysis Batch: 667323

Lab Sample ID: LCS 160-663644/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Prep Batch: 663644**

Total **Spike** LCS LCS Uncert. %Rec Analyte Added Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits Radium-226 11.3 11.52 1.00 0.102 pCi/L 102 75 - 125

Eurofins St. Louis

6/24/2024

10

Job ID: 160-53903-1

Method: 903.0 - Radium-226 (GFPC) (Continued)

Lab Sample ID: LCS 160-663644/2-A

Matrix: Water

Analysis Batch: 667323

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 88.3 30 - 110 **Client Sample ID: Lab Control Sample**

Prep Type: Total/NA

Prep Batch: 663644

Lab Sample ID: 380-93199-Q-4-F DU

Matrix: Water

Analysis Batch: 667440

Client Sample ID: Duplicate

Prep Type: Total/NA

Prep Batch: 663644

Total DU DU **RER** Sample Sample Uncert. Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-226 0.0717 0.1020 0.0738 1.00 0.0645 pCi/L 0.22

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 86.5 30 - 110

Method: 904.0 - Radium-228 (GFPC)

Lab Sample ID: MB 160-659258/1-A

Matrix: Water

Analysis Batch: 663009

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 659258

			Count	Total						
	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.5316	U	0.405	0.408	1.00	0.626	pCi/L	04/30/24 08:07	05/23/24 12:11	1

MB MB Carrier **%Yield Qualifier** Limits Prepared Analyzed Ba Carrier 92.9 30 - 110 04/30/24 08:07 05/23/24 12:11 Y Carrier 83.0 30 - 110 04/30/24 08:07 05/23/24 12:11

Lab Sample ID: LCS 160-659258/2-A

Matrix: Water

Analysis Batch: 663009

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Dil Fac

Prep Batch: 659258

Total **Spike** LCS LCS Uncert. %Rec Added Analyte Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits Radium-228 8.92 11.23 1.47 1.00 0.524 pCi/L 126 75 - 125

LCS LCS Carrier %Yield Qualifier l imits Ba Carrier 96.4 30 - 110 Y Carrier 81.1 30 - 110

Lab Sample ID: 160-53903-3 DU

Matrix: Water

Analysis Batch: 663010

Client Sample ID: JHC-MW-15008R

Prep Type: Total/NA

Prep Batch: 659258

					Total						
	Sample	Sample	DU	DU	Uncert.						RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit		RER	Limit
Radium-228	0.450	U	 0.7926		0.383	1.00	0.510	pCi/L		0.47	1

Eurofins St. Louis

QC Sample Results

Client: Consumers Energy Job ID: 160-53903-1

Project/Site: JH Campbell Pond A Wells

Method: 904.0 - Radium-228 (GFPC) (Continued)

Lab Sample ID: 160-53903-3 DU

Matrix: Water

Analysis Batch: 663010

DU DU

Carrier	%Yield	Qualifier	Limits
Ba Carrier	96.7		30 - 110
Y Carrier	82.2		30 - 110

Client Sample ID: JHC-MW-15008R

Prep Type: Total/NA

Prep Batch: 659258

5

6

8

9

QC Association Summary

Client: Consumers Energy Project/Site: JH Campbell Pond A Wells

Job ID: 160-53903-1

Rad

Prep Batch: 659257

Lab Sample ID 160-53903-3	Client Sample ID JHC-MW-15008R	Prep Type Total/NA	Matrix Water	Method PrecSep-21	Prep Batch
MB 160-659257/1-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-659257/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
160-53903-3 DU	JHC-MW-15008R	Total/NA	Water	PrecSep-21	

Prep Batch: 659258

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-53903-1	JHC-MW-15006	Total/NA	Water	PrecSep_0	
160-53903-2	JHC-MW-15007R	Total/NA	Water	PrecSep_0	
160-53903-3	JHC-MW-15008R	Total/NA	Water	PrecSep_0	
160-53903-4	JHC-MW-15009R	Total/NA	Water	PrecSep_0	
160-53903-5	JHC-MW-15011R	Total/NA	Water	PrecSep_0	
160-53903-6	DUP-02	Total/NA	Water	PrecSep_0	
160-53903-7	FB-02	Total/NA	Water	PrecSep_0	
160-53903-8	EB-02	Total/NA	Water	PrecSep_0	
MB 160-659258/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-659258/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
160-53903-3 DU	JHC-MW-15008R	Total/NA	Water	PrecSep_0	

Prep Batch: 663644

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-53903-1	JHC-MW-15006	Total/NA	Water	PrecSep-21	
160-53903-2	JHC-MW-15007R	Total/NA	Water	PrecSep-21	
160-53903-4	JHC-MW-15009R	Total/NA	Water	PrecSep-21	
160-53903-5	JHC-MW-15011R	Total/NA	Water	PrecSep-21	
160-53903-6	DUP-02	Total/NA	Water	PrecSep-21	
160-53903-7	FB-02	Total/NA	Water	PrecSep-21	
160-53903-8	EB-02	Total/NA	Water	PrecSep-21	
MB 160-663644/1-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-663644/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
380-93199-Q-4-F DU	Duplicate	Total/NA	Water	PrecSep-21	

Tracer/Carrier Summary

Client: Consumers Energy

Project/Site: JH Campbell Pond A Wells

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

			Percent Yield (Acceptance Limits)
		Ва	
Lab Sample ID	Client Sample ID	(30-110)	
160-53903-1	JHC-MW-15006	81.5	
160-53903-2	JHC-MW-15007R	87.8	
160-53903-3	JHC-MW-15008R	99.7	
160-53903-3 DU	JHC-MW-15008R	96.7	
160-53903-4	JHC-MW-15009R	86.8	
160-53903-5	JHC-MW-15011R	82.5	
160-53903-6	DUP-02	86.8	
160-53903-7	FB-02	73.0	
160-53903-8	EB-02	80.5	
380-93199-Q-4-F DU	Duplicate	86.5	
LCS 160-659257/2-A	Lab Control Sample	96.4	
LCS 160-663644/2-A	Lab Control Sample	88.3	
MB 160-659257/1-A	Method Blank	92.9	
MB 160-663644/1-A	Method Blank	82.8	
Tracer/Carrier Legen	d		

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water Prep Type: Total/NA

		Ва	Υ	Percent Yield (Acceptance Limits)
Lab Sample ID	Client Sample ID	(30-110)	(30-110)	
160-53903-1	JHC-MW-15006	93.9	84.5	
160-53903-2	JHC-MW-15007R	90.6	79.3	
160-53903-3	JHC-MW-15008R	99.7	83.4	
160-53903-3 DU	JHC-MW-15008R	96.7	82.2	
160-53903-4	JHC-MW-15009R	84.8	83.4	
160-53903-5	JHC-MW-15011R	86.8	81.1	
160-53903-6	DUP-02	82.2	83.4	
160-53903-7	FB-02	92.1	83.0	
160-53903-8	EB-02	94.4	80.0	
CS 160-659258/2-A	Lab Control Sample	96.4	81.1	
MB 160-659258/1-A	Method Blank	92.9	83.0	

Y = Y Carrier

Eurofins St. Louis

Job ID: 160-53903-1

2

4

6

8

10

11

12

ANALYTICAL REPORT

PREPARED FOR

Attn: Emil Blaj Consumers Energy 135 W Trail Street Jackson, Michigan 49201

Generated 6/24/2024 6:12:30 PM

JOB DESCRIPTION

JH Campbell Supplemental

JOB NUMBER

160-53904-1

Eurofins St. Louis 13715 Rider Trail North Earth City MO 63045

Eurofins St. Louis

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

Authorization

Michakonumy Generated 6/24/2024 6:12:30 PM

Authorized for release by Micha Korrinhizer, Project Manager Micha.Korrinhizer@et.eurofinsus.com (314)298-8566 __'

3

4

5

6

_

9

1 0

11

Client: Consumers Energy Project/Site: JH Campbell Supplemental Laboratory Job ID: 160-53904-1

Table of Contents

0
1
7
9
0
()

Δ

5

6

8

9

10

Case Narrative

Client: Consumers Energy Job ID: 160-53904-1 Project: JH Campbell Supplemental

Eurofins St. Louis Job ID: 160-53904-1

CASE NARRATIVE

Client: Consumers Energy

Project: JH Campbell CCR Groundwater Testing

Report Number: 160-53904-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition, all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method.

Eurofins Environment Testing attests to the validity of the laboratory data generated by Eurofins facilities reported herein. All analyses performed by Eurofins Environment Testing facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins Environment Testing's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Calculations are performed before rounding to avoid round-off errors in calculated results.

Proper preservation was noted for the methods performed on these samples, unless otherwise detailed below.

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative.

Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

The matrix for the Method Blank and LCS/LCSD is as close to the samples as can be reasonably achieved. Detailed information can be found in the most current revision of the associated SOP.

The method blank (MB) z-score is within limits, unless stated otherwise below, and is stored in the level IV raw data.

This laboratory report is confidential and is intended for the sole use of Eurofins Environment Testing and its client.

No additional analytical or quality issues were noted, other than those described below or in the Definitions/ Glossary page.

Receipt

The samples were received on 4/26/2024 9:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved. The temperature of the cooler at receipt time was 15.6°C.

Receipt Exceptions

The following sample was received at the laboratory without a sample collection time documented on the chain of custody: DUP-07 (160-53904-9). A time of 12:00am was used to log the sample.

Method 903.0 - Radium-226 (GFPC)

Samples MW-14S (160-53904-1), PZ-23S (160-53904-2), PZ-24S (160-53904-3), PZ-24 (160-53904-4), PZ-40S (160-53904-5), PZ-40 (160-53904-6), TW-19-05 (160-53904-7), TW-19-06A (160-53904-8) and DUP-07 (160-53904-9) were analyzed for Radium-226 (GFPC). The samples were prepared on 5/29/2024 and analyzed on 6/21/2024.

Method 904.0 - Radium-228 (GFPC)

Samples MW-14S (160-53904-1), PZ-23S (160-53904-2), PZ-24S (160-53904-3), PZ-24 (160-53904-4), PZ-40S (160-53904-5), PZ-40 (160-53904-6), TW-19-05 (160-53904-7), TW-19-06A (160-53904-8) and DUP-07 (160-53904-9) were analyzed for Radium-228 (GFPC). The samples were prepared on 4/30/2024 and analyzed on 5/23/2024.

The Ra-228 laboratory control sample (LCS) associated with batch 160-659258 recovered at 126%. The limits in our LIMS system at (75-125%) reflect the requirements of a regulatory agency that represents a large amount of our work. However, the samples associated with this LCS are not from this agency and are therefore held to our in-house statistical limits of 69-145%. The LCS is within criteria and no further action is required.

Eurofins St. Louis

Page 4 of 20 6/24/2024

Case Narrative

Client: Consumers Energy

Job ID: 160-53904-1 Project: JH Campbell Supplemental

Job ID: 160-53904-1 (Continued)

Eurofins St. Louis

Method Ra226_Ra228 - Combined Radium-226 and Radium-228

Samples MW-14S (160-53904-1), PZ-23S (160-53904-2), PZ-24S (160-53904-3), PZ-24 (160-53904-4), PZ-40S (160-53904-5), PZ-40 (160-53904-6), TW-19-05 (160-53904-7), TW-19-06A (160-53904-8) and DUP-07 (160-53904-9) were analyzed for Combined Radium-226 and Radium-228. The samples were analyzed on 6/24/2024.

Eurofins St. Louis

Page 5 of 20 6/24/2024

Form No. CA-C-WI-002. Rev. 4.23. dated 4/16/2019

02/20

Previous

迎教与

Received by Lenthing K.
Received in Laboratory by:

Date/Time:

Company:

Company

Therm ID No. Date/Time:

Corr'd:

Cooler Temp. (°C): Obs'd:

540

Received by:

Date/Time:

Disposal by Lab

Return to Client

Company:

TestAmerica Laboratories, Inc. d/b/a Eurofins TestAmerica Date: Lab Contact: Jayna Awalt Other: Site Contact: × × × × × Radium 228 (EPA 904.0) ✓ RCRA × × × × Radium 226 (EPA 903.1) Perform MS / MSD (Y / N) 4 ☐ NPDES # of Cont. 7 7 8 ✓ WORKING DAYS Matrix βW βM GW βM GW GΨ GΨ Regulatory Program: Dw Analysis Turnaround Time TAT if different from Below __22 days_ Type (C=Comp, G=Grab) Email: Emil.Blaj@cmsenergy.com Sample Project Manager: Emil Blaj 2 weeks 2 days 1 week 1 day Tel/Fax: 517-788-5888 Sample Time 1200 1340 1948 1755 1103 0938 1731 CALENDAR DAYS 04/16/24 Sample 04/16/24 04/16/24 04/16/24 04/16/24 04/16/24 04/16/24 Date Project Name: JH Campbell Supplemental Sample Identification Consumers Energy, Laboratory Services Earth City, MO 63045-1205 phone 314.298.8566 fax 314.298.8757 Client Contact FAX P O # (PR24040552/PO4400121591) TW-19-05 PZ-24S PZ-23S PZ-24 PZ-40S PZ-40 135 W. Trail Street lackson, MI 49201 Project #: 24-0281 xxx xxx (xxx 517-788-5888

Sample Specific Notes:

160-53904 Chain of Custody

× × ×

× ×

7 ~ 2

> SΚ βM

1930

04/16/24 04/16/24

TW-19-06A

DUP-07

×

Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Possible Hazard Identification:

Non-Hazard Skin Irrita
Special Instructions/QC Requirements & Comments: Comments Section if the lab is to dispose of the sample

Company:
Consult ENERS
Company: Custody Seal No. *일* Yes Custody Seals Intact:

Relinquished by:

Relinquished by:

Page 6 of 20

Eurofins TestAmerica, St. Louis 13715 Rider Trail North

Environment Testing

🔆 eurofins

Chain of Custody Record

COCs

For Lab Use Only:

Walk-in Client: -ab Sampling: Job / SDG No.

Sampler: CELS ₽

COC No

Login Sample Receipt Checklist

Client: Consumers Energy Job Number: 160-53904-1

Login Number: 53904 List Source: Eurofins St. Louis

List Number: 1

Creator: Worthington, Sierra M

Grouton Worthington, Gloria in		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	Sample 9 had no time listed on the COC.
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

4

J

7

q

10

11

Definitions/Glossary

Client: Consumers Energy Job ID: 160-53904-1

Project/Site: JH Campbell Supplemental

Qualifiers

R	a	ď
.,	ч	u

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance I

LCS or LCSD is outside acceptance limits. Result is less than the sample detection limit.

Glossary

Abbreviation These commonly used abbreviations may or n	ay not be present in this report.
---	-----------------------------------

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dilution Factor Dil Fac

Detection Limit (DoD/DOE) DΙ

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) MLMost Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) RER

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) **TEF** Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Method Summary

Client: Consumers Energy

Project/Site: JH Campbell Supplemental

Method	Method Description	Protocol	Laboratory
903.0	Radium-226 (GFPC)	EPA	EET SL
904.0	Radium-228 (GFPC)	EPA	EET SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	EET SL
PrecSep_0	Preparation, Precipitate Separation	None	EET SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	EET SL

Protocol References:

EPA = US Environmental Protection Agency

None = None

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Job ID: 160-53904-1

3

4

J

7

8

9

10

11

Sample Summary

Client: Consumers Energy Project/Site: JH Campbell Supplemental

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
160-53904-1	MW-14S	Water	04/16/24 12:00	04/26/24 09:30
160-53904-2	PZ-23S	Water	04/16/24 13:40	04/26/24 09:30
160-53904-3	PZ-24S	Water	04/16/24 19:48	04/26/24 09:30
160-53904-4	PZ-24	Water	04/16/24 17:55	04/26/24 09:30
160-53904-5	PZ-40S	Water	04/16/24 11:03	04/26/24 09:30
160-53904-6	PZ-40	Water	04/16/24 09:38	04/26/24 09:30
160-53904-7	TW-19-05	Water	04/16/24 17:31	04/26/24 09:30
160-53904-8	TW-19-06A	Water	04/16/24 19:30	04/26/24 09:30
160-53904-9	DUP-07	Water	04/16/24 00:00	04/26/24 09:30

Job ID: 160-53904-1

Project/Site: JH Campbell Supplemental

Client Sample ID: MW-14S Lab Sample ID: 160-53904-1 Date Collected: 04/16/24 12:00

Matrix: Water

Date Received: 04/26/24 09:30

Method: EPA 903	.0 - Radium	-226 (GFP	C)							
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.0103	U	0.0336	0.0336	1.00	0.0864	pCi/L	05/29/24 08:48	06/21/24 10:00	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	73.8		30 - 110					05/29/24 08:48	06/21/24 10:00	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0279	U	0.291	0.291	1.00	0.547	pCi/L	04/30/24 08:07	05/23/24 12:09	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	96.4		30 - 110					04/30/24 08:07	05/23/24 12:09	1
Y Carrier	74.4		30 - 110					04/30/24 08:07	05/23/24 12:09	1

Method: TAL-STL R	a226_Ra	228 - Com	bined Radi	um-226 an	d Radiur	n-228				
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.0177	U	0.293	0.293	5.00	0.547	pCi/L		06/24/24 16:53	1

Client Sample ID: PZ-23S Lab Sample ID: 160-53904-2 Date Collected: 04/16/24 13:40 **Matrix: Water** Date Received: 04/26/24 09:30

Method: EPA 903	3.0 - Radium	-226 (GFP	C)							
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0664	U	0.0618	0.0621	1.00	0.0922	pCi/L	05/29/24 08:48	06/21/24 10:00	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	77.3		30 - 110					05/29/24 08:48	06/21/24 10:00	1

Method: EPA 904.	0 - Radium	-228 (GFP	C)							
			Count	Total						
Analyte	Pocult	Qualifier	Uncert. (2σ+/-)	Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
		Qualifier -	` _							Diriac
Radium-228	0.671		0.380	0.385	1.00	0.545	pCi/L	04/30/24 08:07	05/23/24 12:09	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.7		30 - 110					04/30/24 08:07	05/23/24 12:09	1
Y Carrier	81.5		30 - 110					04/30/24 08:07	05/23/24 12:09	1

Project/Site: JH Campbell Supplemental

Client Sample ID: PZ-23S

Lab Sample ID: 160-53904-2

Matrix: Water

Job ID: 160-53904-1

Date Collected: 04/16/24 13:40 Date Received: 04/26/24 09:30

	_		Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.737		0.385	0.390	5.00	0.545	pCi/L		06/24/24 16:53	1

Client Sample ID: PZ-24S

Lab Sample ID: 160-53904-3

Matrix: Water

Date Collected: 04/16/24 19:48 Date Received: 04/26/24 09:30

Method: EPA 903	.0 - Radium	-226 (GFP	C)							
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0485	U	0.0728	0.0730	1.00	0.125	pCi/L	05/29/24 08:48	06/21/24 10:14	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	76.0		30 - 110					05/29/24 08:48	06/21/24 10:14	1

Method: EPA 904.0 - Radium-228 (GFPC)

Analyte	Result	Oualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analvzed	Dil Fac
		Quantite								- In rac
Radium-228	0.801		0.454	0.460	1.00	0.658	pCI/L	04/30/24 08:07	05/23/24 12:10	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	84.5		30 - 110					04/30/24 08:07	05/23/24 12:10	1
Y Carrier	82.6		30 - 110					04/30/24 08:07	05/23/24 12:10	1

Method: TAL-STL Ra226 Ra228 - Combined Radium-226 and Radium-228

	_		Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.850		0.460	0.466	5.00	0.658	pCi/L		06/24/24 16:53	1

Client Sample ID: PZ-24

Lab Sample ID: 160-53904-4

Matrix: Water

Date Collected: 04/16/24 17:55 Date Received: 04/26/24 09:30

Method: EPA 90	3.0 - Radium	-226 (GFP	PC)							
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0404	U	0.0630	0.0631	1.00	0.109	pCi/L	05/29/24 08:48	06/21/24 10:15	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	80.8		30 - 110					05/29/24 08:48	06/21/24 10:15	1

Project/Site: JH Campbell Supplemental

Client Sample ID: PZ-24

Lab Sample ID: 160-53904-4

Matrix: Water

Job ID: 160-53904-1

Date Collected: 04/16/24 17:55 Date Received: 04/26/24 09:30

Method: EPA 904.	0 - Radium	-228 (GFP	C)							
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.568	U	0.414	0.418	1.00	0.630	pCi/L	04/30/24 08:07	05/23/24 12:07	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	84.0		30 - 110					04/30/24 08:07	05/23/24 12:07	1
Y Carrier	77.4		30 - 110					04/30/24 08:07	05/23/24 12:07	1

Method: TAL-STL R	a226_Ra	228 - Com	bined Radi	um-226 an	d Radiur	n-228				
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.608	U	0.419	0.423	5.00	0.630	pCi/L		06/24/24 16:53	1

Client Sample ID: PZ-40S Lab Sample ID: 160-53904-5 Date Collected: 04/16/24 11:03 **Matrix: Water** Date Received: 04/26/24 09:30

Method: EPA 903.0) - Radium	-226 (GFP	C)							
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0405	U	0.0713	0.0713	1.00	0.125	pCi/L	05/29/24 08:48	06/21/24 10:15	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	80.8		30 - 110					05/29/24 08:48	06/21/24 10:15	1

Method: EPA 904	I.0 - Radium	-228 (GFP	C)							
		•	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.421	U *	0.356	0.358	1.00	0.554	pCi/L	04/30/24 08:07	05/23/24 12:07	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.8		30 - 110					04/30/24 08:07	05/23/24 12:07	1
Y Carrier	80.0		30 - 110					04/30/24 08:07	05/23/24 12:07	1

Method: TAL-STL R	a226_Ra	228 - Com	bined Radi	um-226 an	d Radiur	n-228				
	_		Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.462	U	0.363	0.365	5.00	0.554	pCi/L		06/24/24 16:53	1

Project/Site: JH Campbell Supplemental

Client Sample ID: PZ-40

Date Collected: 04/16/24 09:38 Date Received: 04/26/24 09:30 Lab Sample ID: 160-53904-6

Matrix: Water

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0879	U	0.0736	0.0740	1.00	0.108	pCi/L	05/29/24 08:48	06/21/24 10:15	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	76.3		30 - 110					05/29/24 08:48	06/21/24 10:15	

Method: EPA 904.0 - Radium-228 (GFPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.309	U	0.310	0.311	1.00	0.496	pCi/L	04/30/24 08:07	05/23/24 12:07	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	86.3		30 - 110					04/30/24 08:07	05/23/24 12:07	1
Y Carrier	83.0		30 - 110					04/30/24 08:07	05/23/24 12:07	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.397	U	0.319	0.320	5.00	0.496	pCi/L		06/24/24 16:53	1

Client Sample ID: TW-19-05

Date Collected: 04/16/24 17:31 Date Received: 04/26/24 09:30 Lab Sample ID: 160-53904-7

Matrix: Water

Method: EPA 903.0 - Radium-226 (GFPC)

Method: EPA 90.	olo Radialli	220 (0. 1	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.137		0.0762	0.0772	1.00	0.0913	pCi/L	05/29/24 08:48	06/21/24 10:15	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	83.5		30 - 110					05/29/24 08:48	06/21/24 10:15	1

Method: EPA 904.0 - Radium-228 (GFPC)

		·	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.159	U	0.380	0.381	1.00	0.666	pCi/L	04/30/24 08:07	05/23/24 12:07	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	89.1		30 - 110					04/30/24 08:07	05/23/24 12:07	1
Y Carrier	79.3		30 - 110					04/30/24 08:07	05/23/24 12:07	1

Project/Site: JH Campbell Supplemental

Client Sample ID: TW-19-05

Lab Sample ID: 160-53904-7

Matrix: Water

Job ID: 160-53904-1

Date Collected: 04/16/24 17:31 Date Received: 04/26/24 09:30

Method: TAL-STL Ra226_	Ra228 - Combined Radium-226 and Radium-228
------------------------	--

	_		Count	Total						
Analyte	Result	Qualifier	Uncert. (2σ+/-)	Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.296	U	0.388	0.389	5.00	0.666	pCi/L		06/24/24 16:53	1

Lab Sample ID: 160-53904-8 Client Sample ID: TW-19-06A

Date Collected: 04/16/24 19:30 **Matrix: Water** Date Received: 04/26/24 09:30

Method: EPA 903	.0 - Radium	-226 (GFP	C)							
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0907	U	0.0684	0.0689	1.00	0.0952	pCi/L	05/29/24 08:48	06/21/24 10:15	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	81.0		30 - 110					05/29/24 08:48	06/21/24 10:15	1

Method: EPA 90	4.0 - Radium	-228 (GFP	C)							
		•	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.543	U	0.406	0.409	1.00	0.622	pCi/L	04/30/24 08:07	05/23/24 12:02	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	90.4		30 - 110					04/30/24 08:07	05/23/24 12:02	1
Y Carrier	78.5		30 - 110					04/30/24 08:07	05/23/24 12:02	1

Method: TAL-STL Ra226 Ra228 - Cor	mbined Radium-226 and Radium-228

Michiga. IAE OTET	turro_itu		billed Itaai	uiii LLO uii	a itaaiai					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.633		0.412	0.415	5.00	0.622	pCi/L		06/24/24 16:53	1

Client Sample ID: DUP-07 Lab Sample ID: 160-53904-9 **Matrix: Water**

Date Collected: 04/16/24 00:00 Date Received: 04/26/24 09:30

Method: EPA 90	3.0 - Radium	-226 (GFP	C)							
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.123		0.0747	0.0755	1.00	0.0967	pCi/L	05/29/24 08:48	06/21/24 10:15	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	83.5		30 - 110					05/29/24 08:48	06/21/24 10:15	1

Client Sample Results

Client: Consumers Energy Job ID: 160-53904-1

Project/Site: JH Campbell Supplemental

Client Sample ID: DUP-07 Lab Sample ID: 160-53904-9

Date Collected: 04/16/24 00:00 Matrix: Water Date Received: 04/26/24 09:30

Method: EPA 90	4.0 - Radium	-228 (GFP	C)							
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.597	U	0.410	0.414	1.00	0.610	pCi/L	04/30/24 08:07	05/23/24 13:21	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	92.1		30 - 110					04/30/24 08:07	05/23/24 13:21	1
Y Carrier	80.0		30 - 110					04/30/24 08:07	05/23/24 13:21	1

Method: TAL-STL F	Ra226_Ra228 - Co	mbined Radi	ium-226 an	d Radiur	n-228				
		Count	Total						
		Uncert.	Uncert.						
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.720	0.417	0.421	5.00	0.610	pCi/L		06/24/24 16:53	1

6/24/2024

3

4

_

9

10

Client: Consumers Energy Job ID: 160-53904-1

Project/Site: JH Campbell Supplemental

Method: 903.0 - Radium-226 (GFPC)

Lab Sample ID: MB 160-663644/1-A

Lab Sample ID: LCS 160-663644/2-A

Matrix: Water

Matrix: Water

Analysis Batch: 667323

Analysis Batch: 667323

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 663644

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.08497 Ū 0.0640 0.0644 1.00 0.0883 pCi/L 05/29/24 08:48 06/21/24 09:56

Total

MB

Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 82.8 30 - 110 05/29/24 08:48 06/21/24 09:56

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 663644

Total LCS LCS %Rec **Spike** Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-226 11.3 11.52 1.18 1.00 0.102 pCi/L 102 75 - 125

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 88.3 30 - 110

Lab Sample ID: 380-93199-Q-4-F DU

Count

Matrix: Water

Analysis Batch: 667440

Client Sample ID: Duplicate Prep Type: Total/NA

Prep Batch: 663644

Total Sample Sample DU DU **RER** Uncert. Analyte Result Qual $(2\sigma + / -)$ RL **MDC** Unit Result Qual RER Limit 0.0717 Radium-226 0.0738 1.00 0.0645 pCi/L 0.22 0.1020

DU DU Carrier %Yield Qualifier Limits Ba Carrier 86.5 30 - 110

Method: 904.0 - Radium-228 (GFPC)

Lab Sample ID: MB 160-659258/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 663009 Prep Batch: 659258 Count Total

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Dil Fac Analyzed Radium-228 Ū 0.405 0.408 1.00 0.626 pCi/L 04/30/24 08:07 05/23/24 12:11 0.5316

MB MB Carrier %Yield Qualifier Limits Prepared Dil Fac Analyzed Ba Carrier 92.9 30 - 110 04/30/24 08:07 05/23/24 12:11 30 - 110 Y Carrier 83.0 04/30/24 08:07 05/23/24 12:11

10

Eurofins St. Louis

QC Sample Results

Client: Consumers Energy Job ID: 160-53904-1

Project/Site: JH Campbell Supplemental

Method: 904.0 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCS 160-659258/2-A

Matrix: Water

Analysis Batch: 663009

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 659258

Total LCS LCS %Rec Spike Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL**MDC** Unit %Rec Limits Radium-228 8.92 11.23 1.47 1.00 0.524 pCi/L 126 75 - 125

LCS LCS

%Yield Qualifier Carrier Limits Ba Carrier 96.4 30 - 110 Y Carrier 81.1 30 - 110

Lab Sample ID: 160-53903-A-3-B DU **Client Sample ID: Duplicate**

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 663010 **Prep Batch: 659258**

Total Sample Sample DU DU Uncert. **RER** Result Qual Limit Analyte Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Radium-228 0.450 U 1.00 0.510 pCi/L 0.47 0.7926 0.383

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 30 - 110 96.7 82.2 30 - 110 Y Carrier

QC Association Summary

Client: Consumers Energy Project/Site: JH Campbell Supplemental

Job ID: 160-53904-1

Prep Batch: 659258

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-53904-1	MW-14S	Total/NA	Water	PrecSep_0	
160-53904-2	PZ-23S	Total/NA	Water	PrecSep_0	
160-53904-3	PZ-24S	Total/NA	Water	PrecSep_0	
160-53904-4	PZ-24	Total/NA	Water	PrecSep_0	
160-53904-5	PZ-40S	Total/NA	Water	PrecSep_0	
160-53904-6	PZ-40	Total/NA	Water	PrecSep_0	
160-53904-7	TW-19-05	Total/NA	Water	PrecSep_0	
160-53904-8	TW-19-06A	Total/NA	Water	PrecSep_0	
160-53904-9	DUP-07	Total/NA	Water	PrecSep_0	
MB 160-659258/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-659258/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
160-53903-A-3-B DU	Duplicate	Total/NA	Water	PrecSep_0	

Prep Batch: 663644

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-53904-1	MW-14S	Total/NA	Water	PrecSep-21	
160-53904-2	PZ-23S	Total/NA	Water	PrecSep-21	
160-53904-3	PZ-24S	Total/NA	Water	PrecSep-21	
160-53904-4	PZ-24	Total/NA	Water	PrecSep-21	
160-53904-5	PZ-40S	Total/NA	Water	PrecSep-21	
160-53904-6	PZ-40	Total/NA	Water	PrecSep-21	
160-53904-7	TW-19-05	Total/NA	Water	PrecSep-21	
160-53904-8	TW-19-06A	Total/NA	Water	PrecSep-21	
160-53904-9	DUP-07	Total/NA	Water	PrecSep-21	
MB 160-663644/1-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-663644/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
380-93199-Q-4-F DU	Duplicate	Total/NA	Water	PrecSep-21	

Tracer/Carrier Summary

Client: Consumers Energy

Project/Site: JH Campbell Supplemental

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

			Percent Yield (Acceptance Limits)		
		Ва			
Lab Sample ID	Client Sample ID	(30-110)			
160-53904-1	MW-14S	73.8			
160-53904-2	PZ-23S	77.3			
160-53904-3	PZ-24S	76.0			
160-53904-4	PZ-24	80.8			
160-53904-5	PZ-40S	80.8			
160-53904-6	PZ-40	76.3			
160-53904-7	TW-19-05	83.5			
160-53904-8	TW-19-06A	81.0			
160-53904-9	DUP-07	83.5			
380-93199-Q-4-F DU	Duplicate	86.5			
LCS 160-663644/2-A	Lab Control Sample	88.3			
LC3 100-003044/2-A		82.8			

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water Prep Type: Total/NA

		Ва	Υ	Percent Yield (Acceptance Limits)
Lab Sample ID	Client Sample ID	(30-110)	(30-110)	
160-53903-A-3-B DU	 Duplicate	96.7	82.2	
160-53904-1	MW-14S	96.4	74.4	
160-53904-2	PZ-23S	95.7	81.5	
160-53904-3	PZ-24S	84.5	82.6	
160-53904-4	PZ-24	84.0	77.4	
160-53904-5	PZ-40S	87.8	80.0	
160-53904-6	PZ-40	86.3	83.0	
160-53904-7	TW-19-05	89.1	79.3	
160-53904-8	TW-19-06A	90.4	78.5	
160-53904-9	DUP-07	92.1	80.0	
LCS 160-659258/2-A	Lab Control Sample	96.4	81.1	
MB 160-659258/1-A	Method Blank	92.9	83.0	

Y = Y Carrier

Page 20 of 20

Job ID: 160-53904-1

12

ANALYTICAL REPORT

PREPARED FOR

Attn: Emil Blaj Consumers Energy 135 W Trail Street Jackson, Michigan 49201 Generated 11/27/2024 5:31:45 PM

JOB DESCRIPTION

JH Campbell Supplemental Wells

JOB NUMBER

160-55983-1

Eurofins St. Louis 13715 Rider Trail North Earth City MO 63045

Eurofins St. Louis

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

Authorization

Generated 11/27/2024 5:31:45 PM

Authorized for release by Jayna Awalt, Project Manager II Jayna.Awalt@et.eurofinsus.com Designee for Micha Korrinhizer, Project Manager Micha.Korrinhizer@et.eurofinsus.com (314)298-8566

Client: Consumers Energy Project/Site: JH Campbell Supplemental Wells Laboratory Job ID: 160-55983-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Chain of Custody	6
Receipt Checklists	7
Definitions/Glossary	8
Method Summary	9
Sample Summary	10
Client Sample Results	11
QC Sample Results	17
QC Association Summary	20
Tracer Carrier Summary	21

5

4

9

10

Case Narrative

Client: Consumers Energy

Project: JH Campbell Supplemental Wells

Job ID: 160-55983-1 Eurofins St. Louis

Job Narrative 160-55983-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition, all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method.

Eurofins Environment Testing attests to the validity of the laboratory data generated by Eurofins facilities reported herein. All analyses performed by Eurofins Environment Testing facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins Environment Testing's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Calculations are performed before rounding to avoid round-off errors in calculated results.

Proper preservation was noted for the methods performed on these samples, unless otherwise detailed below.

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative.

Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

This laboratory report is confidential and is intended for the sole use of Eurofins Environment Testing and its client.

No additional analytical or quality issues were noted, other than those described below or in the Definitions/ Glossary page.

Receipt

The samples were received on 10/24/2024 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved. The temperature of the cooler at receipt time was 19.6°C.

Receipt Exceptions

The following sample was received at the laboratory without a sample collection time documented on the chain of custody: DUP-07 (160-55983-9). The laboratory was instructed to use a sample collection time of 12:00am. Samplers name is not on the COC. MW-14S (160-55983-1), PZ-23S (160-55983-2), PZ-24S (160-55983-3), PZ-24 (160-55983-4), PZ-40S (160-55983-5), PZ-40 (160-55983-6), TW-19-05 (160-55983-7), TW-19-06A (160-55983-8) and DUP-07 (160-55983-9)

Method 903.0 - Radium-226 (GFPC)

Samples MW-14S (160-55983-1), PZ-23S (160-55983-2), PZ-24S (160-55983-3), PZ-24 (160-55983-4), PZ-40S (160-55983-5), PZ-40 (160-55983-6), TW-19-05 (160-55983-7), TW-19-06A (160-55983-8) and DUP-07 (160-55983-9) were analyzed for Radium-226 (GFPC). The samples were prepared on 10/28/2024 and analyzed on 11/19/2024.

Method 904.0 - Radium-228 (GFPC)

Samples MW-14S (160-55983-1), PZ-23S (160-55983-2), PZ-24S (160-55983-3), PZ-24 (160-55983-4), PZ-40S (160-55983-4), PZ-40S (160-55983-6), TW-19-05 (160-55983-7), TW-19-06A (160-55983-8) and DUP-07 (160-55983-9) were analyzed for Radium-228 (GFPC). The samples were prepared on 10/28/2024 and 11/19/2024 and analyzed on 11/14/2024 and 11/19/2024.

Radium-228 batch 685409

The original count of the laboratory control sample (LCS) for preparation batch 160-685409 and analytical batch 160-688581 recovered (155%) outside the upper acceptance limits for Radium-228. The LCS was recounted and passed within the established QC limits; however, the associated sample MW-14S (160-55983-1) was not recounted at the same time the LCS recounted. The LCS recount has been reported; therefore, the potential bias in the sample should be considered by the client when evaluating the data. There was insufficient sample to perform a re-extraction or re-analysis. Per client direction, the original sample result for MW-14S (160-55983-1) has been reported.

Method Ra226_Ra228 - Combined Radium-226 and Radium-228

Samples MW-14S (160-55983-1), PZ-23S (160-55983-2), PZ-24S (160-55983-3), PZ-24 (160-55983-4), PZ-40S (160-55983-5), PZ-40 (160-55983-6), TW-19-05 (160-55983-7), TW-19-06A (160-55983-8) and DUP-07 (160-55983-9) were analyzed for

Eurofins St. Louis

Page 4 of 21 11/27/2024

3

Job ID: 160-55983-1

4

5

7

0

9

10

11

Case Narrative

Client: Consumers Energy

Project: JH Campbell Supplemental Wells

Job ID: 160-55983-1 (Continued)

Eurofins St. Louis

Job ID: 160-55983-1

Combined Radium-226 and Radium-228. The samples were analyzed on 11/27/2024.

3

Ę

S

0

10

11

Phone. P	nple (wewat second) (wewat second) (wewat second) (wewat second) (wewat second) (wewat second)	Korrinhizer, Micha L E-Mail Micha L M	Analysis Requested Analysis Requested 160-55983 Chain of Custody	S). COC No. 160-11904-5895.1 Page 1 of 1 Job # Preservation Codes: e
Phone. Phone. Phone. Phone. Phone. Due Date Requested: 22 BD Compliance Project: (A Ye) A PO # PO # PN #24101083 / PO44001212 WO # PNO # PO # P	mple (wwwatring) mple (wwwatring) mple (wwwatring) matrix matrix matrix matrix matrix matrix wate wate	Perform MS/MSD (Yes of No)	Analysis Requested 160-55983 Chain of Custody	eranisinoo to radmuki istoT X
Pare Requested (days): 22 BD	mple (w=wat second) The second of s		Analysis Requested 160-55983 Chain of Custody	ensitinos to nadmuki listoT
TAT Requested (days) 22 BD	nple Matrix (w=vate, comp, comp, comp, comp, comp, servation Code: Water Water Water	× × \ \ \ \ \ 903.0 - Radium-228 (GFPC) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	160-55983 Chain of Custody	eranisinos fo radmul listoT
TAT Requested (days): 22 BD Compliance Project: (A Ye) A PO # PR #24101083 / PO44001219 WO # 24-0860 Sample (Vertication Project # 24-0860 SSOW#. Sample (Vertication Project # 10/15/24 1611 10/15/24 1611 10/15/24 1451 10/15/24 1451 10/15/24 1544 10/15/24 10/15/24 10/15/24 10/15/24 10/15/24 10/15/24 10/15/	nple Matrix (w-water Sarolid, O-water Allasue, A-All) Secryation Code: Water Water Water	× × \ \ \ \ \ 904.0 - Radium-228 (GFPC)	160-55983 Chain of Custody	stanisines of containers
Compliance Project: (a Yest of Action 12)	nple (www.ter. Second). Somp, Ownster. Second. (Nater Water	× × \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	160-55983 Chain of Custody	stanisiner of confainers
Profession Pro	mpte Matrix (w=water, comp., c=wasteon, c=wasteon, grab) BT=Tissue, A=Air) Water Water Water Water	× × □ 903.0 - Radium-226 (GFPC) × × □ 904.0 « Radium-228 (GFPC)	160-55983 Chain of Custody	Total Number of confainers
Name	mple Matrix (www.atr.) Tope Serold Owners (www.atr.) BTEL BTEL SEROLG (Water Water W	× × □ 903.0 - Radium-228 (GFPC) × × □ 904.0 - Radium-228 (GFPC)	160-55983 Chain of Custody	Total Number of containers
SSOW#. Sample Date Time (Sample (Sample (Time (10/15/24 1217 10/15/24 1451 10/15/24 1451 10/15/24 1451	Matrix (Wrwater, Sweder, Sweder) Swedid, Obwasteon, Destroyle, Acale) Water Water Water	× × \(\Omega \) 903.0 - Radium-226 (GFPC)		Other:
Sample Sample Sample Sample Cample C	Matrix (www.ase. Swoid. Owase. BIFIESSE. ARAID) Water Water	75) 803.0 - Radium-228 (GF + S228		Other:
Sample Date Time (Matrix (wwwater, Swootd, Owwateron, BI=Tissue, Arali) Ition Code: Water	Z-muibsЯ - 0.£0e □ × × Z-muibsЯ - 0.40e □ × ×		
10/15/24 1611 10/15/24 1217 10/15/24 1708 10/15/24 1844 10/15/24 1451 10/15/24 1544	tion Code: Water Water	96 \(\to \) \times \(\times \)		
10/15/24 1611 10/15/24 1217 10/15/24 1708 10/15/24 1844 10/15/24 1451 10/15/24 1544	Water Water Water	××		
10/15/24 10/15/24 10/15/24 10/15/24 10/15/24 10/15/24	Water	×		2
10/15/24 10/15/24 10/15/24 10/15/24	Water	_		2
10/15/24		× × ×		2
10/15/24	Water	× × ×		2
10/15/24	Water	× × ×		2
	Water	× × ×		2
10/15/24	Water	× × ×		2
TW-19-06A	Water	× × ×		2
DUP-07	Water	× × ×		2
		ample Disposal ((A fee may be assessed if sampl	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
sted: I, II, IV, Other (specify) EQuIS EDD for TRC	Kadiological	Pecial Instructions/QC	Special Instructions/QC Requirements:	Archive For Months
linquished by:	Time		Method of Shipment	ment;
Relinquished by Relinquished b	۵	Received by:	UPS Date	Date/Time:
0	Company	Received by	M. Pinetto	OCT 2 4 2024 ASO CETTA
Date/Time.	Company	Received by	ţe.	

Login Sample Receipt Checklist

Client: Consumers Energy Job Number: 160-55983-1

Login Number: 55983 List Source: Eurofins St. Louis

List Number: 1

Creator: Pinette, Meadow L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	No time on COC or sample containers on sample 9
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	
residual cinemis Shorton.	. 4// 1	

Page 7 of 21 11/27/2024

Definitions/Glossary

Client: Consumers Energy Job ID: 160-55983-1

Project/Site: JH Campbell Supplemental Wells

Qualifiers

Rad

Qualifier **Qualifier Description**

Result is less than the sample detection limit.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

Percent Recovery %R **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Page 8 of 21

Method Summary

Client: Consumers Energy

Project/Site: JH Campbell Supplemental Wells

Method	Method Description	Protocol	Laboratory
903.0	Radium-226 (GFPC)	EPA	EET SL
904.0	Radium-228 (GFPC)	EPA	EET SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	EET SL
PrecSep_0	Preparation, Precipitate Separation	None	EET SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	EET SL

Protocol References:

EPA = US Environmental Protection Agency

None = None

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Job ID: 160-55983-1

3

4

5

7

8

9

10

11

10

Sample Summary

Client: Consumers Energy Project/Site: JH Campbell Supplemental Wells

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
160-55983-1	MW-14S	Water	10/15/24 16:11	10/24/24 09:50
160-55983-2	PZ-23S	Water	10/15/24 12:17	10/24/24 09:50
160-55983-3	PZ-24S	Water	10/15/24 17:08	10/24/24 09:50
160-55983-4	PZ-24	Water	10/15/24 18:44	10/24/24 09:50
160-55983-5	PZ-40S	Water	10/15/24 14:51	10/24/24 09:50
160-55983-6	PZ-40	Water	10/15/24 15:44	10/24/24 09:50
160-55983-7	TW-19-05	Water	10/15/24 18:41	10/24/24 09:50
160-55983-8	TW-19-06A	Water	10/15/24 17:21	10/24/24 09:50
160-55983-9	DUP-07	Water	10/15/24 00:00	10/24/24 09:50

Job ID: 160-55983-1

Job ID: 160-55983-1

Project/Site: JH Campbell Supplemental Wells

Client Sample ID: MW-14S

Client: Consumers Energy

Date Collected: 10/15/24 16:11 Date Received: 10/24/24 09:50 Lab Sample ID: 160-55983-1

Matrix: Water

Method: EPA	. 903.0 - Radium-22	6 (GFPC)

Analyte	Result	Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.0420	U	0.0884	0.0885	1.00	0.194	pCi/L	10/28/24 08:50	11/19/24 14:09	1
Carrier Ba Carrier	%Yield 78.5	Qualifier	Limits 30 - 110					Prepared 10/28/24 08:50	Analyzed 11/19/24 14:09	Dil Fac

Method: EPA 904.0 - Radium-228 (GFPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	1.19		0.583	0.593	1.00	0.809	pCi/L	10/28/24 08:55	11/14/24 12:38	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	78.5		30 - 110					10/28/24 08:55	11/14/24 12:38	1
Y Carrier	78.9		30 - 110					10/28/24 08:55	11/14/24 12:38	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.15		0.590	0.600	5.00	0.809	pCi/L		11/27/24 17:01	1

Client Sample ID: PZ-23S

Lab Sample ID: 160-55983-2 Date Collected: 10/15/24 12:17 **Matrix: Water**

Date Received: 10/24/24 09:50

metriod: El A 00			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0509	U	0.0862	0.0864	1.00	0.150	pCi/L	10/28/24 08:50	11/19/24 14:09	1
Carrier Ba Carrier	% Yield 93.9	Qualifier	Limits 30 - 110					Prepared 10/28/24 08:50	Analyzed 11/19/24 14:09	Dil Fac

- Naululli	-220 (GI F	C)							
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.905		0.407	0.415	1.00	0.598	pCi/L	10/28/24 08:55	11/14/24 12:39	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
93.9		30 - 110					10/28/24 08:55	11/14/24 12:39	1
84.1		30 - 110					10/28/24 08:55	11/14/24 12:39	1
	Result 0.905	Result Qualifier 0.905 %Yield Qualifier 93.9	Continue	Count Uncert. Uncert. Uncert. (2σ+/-) (2σ+/-) 0.905 0.407 0.415 WYield Qualifier Limits 30 - 110	Count Total Uncert. Uncert.	Count Total Uncert. Uncert.	Count Uncert. Uncer	Count Uncert. Uncer	Count Uncert. Prepared Analyzed Unit Unit

Eurofins St. Louis

Client Sample ID: PZ-23S

Lab Sample ID: 160-55983-2

Matrix: Water

Date Collected: 10/15/24 12:17 Date Received: 10/24/24 09:50

Analyte

226 + 228

Combined Radium

Method: TAL-STL Ra226 Ra228 - Combined Radium-226 and Radium-228

				aua.					
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.955		0.416	0.424	5.00	0.598	pCi/L		11/27/24 17:01	1

Lab Sample ID: 160-55983-3 Client Sample ID: PZ-24S

Date Collected: 10/15/24 17:08 **Matrix: Water**

Date Received: 10/24/24 09:50

Method: EPA 903.0 - Radium-226 (GFPC) Count Total Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.0743 U 0.104 0.104 1.00 0.176 pCi/L 10/28/24 08:50 11/19/24 14:09 Carrier **%Yield Qualifier** Limits Prepared Analyzed Dil Fac Ba Carrier 87.0 30 - 110 10/28/24 08:50 11/19/24 14:09

Method: EPA 904.0 - Radium-228 (GFPC) Count Total Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac 11/19/24 08:45 11/27/24 12:05 Radium-228 -0.0352 U 1.00 0.874 pCi/L 0.462 0.462 Carrier **%Yield Qualifier** Limits Prepared Analyzed Dil Fac Ba Carrier 85.8 30 - 110 11/19/24 08:45 11/27/24 12:05 Y Carrier 77.0 30 - 110 11/19/24 08:45 11/27/24 12:05

Method: TAL-STL Ra226 Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.0391	U	0.474	0.474	5.00	0.874	pCi/L		11/27/24 17:00	1

Client Sample ID: PZ-24 Lab Sample ID: 160-55983-4

Date Collected: 10/15/24 18:44 Date Received: 10/24/24 09:50

Method: EPA 903.0 - Radium-226 (GFPC) Count Total Uncert. Uncert. Result Qualifier Analyte $(2\sigma + / -)$ $(2\sigma + / -)$ **MDC** Unit RL Prepared Analyzed Dil Fac Radium-226 10/28/24 08:50 11/19/24 14:09 0.0730 U 0.104 0.104 1.00 0.177 pCi/L **%Yield Qualifier** Limits Carrier Prepared Analyzed Dil Fac Ba Carrier 86.6 30 - 110 10/28/24 08:50 11/19/24 14:09

11/27/2024

Matrix: Water

Job ID: 160-55983-1

Lab Sample ID: 160-55983-5

Matrix: Water

Project/Site: JH Campbell Supplemental Wells

Lab Sample ID: 160-55983-4 **Client Sample ID: PZ-24**

Date Collected: 10/15/24 18:44 **Matrix: Water**

Date Received: 10/24/24 09:50

Client: Consumers Energy

Method: EPA 904.0 - Radium-228 (GFPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.00636	U	0.359	0.359	1.00	0.689	pCi/L	11/19/24 08:45	11/27/24 12:05	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	93.1		30 - 110					11/19/24 08:45	11/27/24 12:05	1
Y Carrier	78.5		30 - 110					11/19/24 08:45	11/27/24 12:05	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.0667	U	0.374	0.374	5.00	0.689	pCi/L		11/27/24 17:00	1

Client Sample ID: PZ-40S

Date Collected: 10/15/24 14:51

Date Received: 10/24/24 09:50

Method: EF	A 903.0 - Radiu	m-226 (GFPC)
------------	-----------------	--------------

metriod. Li A 30	oo.o - Radidiii	-220 (31 1	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.0174	U	0.0549	0.0549	1.00	0.127	pCi/L	10/28/24 08:50	11/19/24 14:09	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	92.2		30 - 110					10/28/24 08:50	11/19/24 14:09	1

Method: EPA 904.0 - Radium-228 (GFPC)

		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.773		0.483	0.488	1.00	0.714	pCi/L	10/28/24 08:55	11/14/24 12:40	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	92.2		30 - 110					10/28/24 08:55	11/14/24 12:40	1
Y Carrier	78.5		30 - 110					10/28/24 08:55	11/14/24 12:40	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	iotai					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.756		0.486	0.491	5.00	0.714 pCi/L		11/27/24 17:01	1
226 + 228									

Client: Consumers Energy Job ID: 160-55983-1

Project/Site: JH Campbell Supplemental Wells

Client Sample ID: PZ-40 Lab Sample ID: 160-55983-6

Date Collected: 10/15/24 15:44 **Matrix: Water** Date Received: 10/24/24 09:50

Method: EPA 903.0	0 - Radium	-226 (GFP	C)							
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0341	U	0.0968	0.0969	1.00	0.178	pCi/L	10/28/24 08:50	11/19/24 14:09	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	83.9		30 - 110					10/28/24 08:50	11/19/24 14:09	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0423	U	0.430	0.430	1.00	0.788	pCi/L	10/28/24 08:55	11/14/24 12:39	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	83.9		30 - 110					10/28/24 08:55	11/14/24 12:39	1
Y Carrier	80.0		30 - 110					10/28/24 08:55	11/14/24 12:39	1

Method: TAL-STL R	a226_Ra	228 - Con	nbined Rad	ium-226 a	ınd Radiu	m-228				
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.0765	U	0.441	0.441	5.00	0.788	pCi/L	<u> </u>	11/27/24 17:01	1
+ 228										

Client Sample ID: TW-19-05 Lab Sample ID: 160-55983-7 Date Collected: 10/15/24 18:41 **Matrix: Water** Date Received: 10/24/24 09:50

Method: EPA 90	3.0 - Radium	-226 (GFP	C)							
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.128		0.0885	0.0892	1.00	0.121	pCi/L	10/28/24 08:50	11/19/24 14:09	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	92.4		30 - 110					10/28/24 08:50	11/19/24 14:09	1

Method: EPA 904	4.0 - Radium	-228 (GFP	C)							
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.487		0.325	0.328	1.00	0.483	pCi/L	10/28/24 08:55	11/14/24 11:37	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	92.4		30 - 110					10/28/24 08:55	11/14/24 11:37	1
Y Carrier	85.6		30 - 110					10/28/24 08:55	11/14/24 11:37	1

Client Sample ID: TW-19-05

Lab Sample ID: 160-55983-7

Matrix: Water

Date Collected: 10/15/24 18:41 Date Received: 10/24/24 09:50

Method: TAL-STL Ra226_	Ra228 - Combined Radium-226 and Radium-228
------------------------	--

	_		Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.615		0.337	0.340	5.00	0.483	pCi/L		11/27/24 17:01	1

Client Sample ID: TW-19-06A

Lab Sample ID: 160-55983-8

Date Collected: 10/15/24 17:21 Date Received: 10/24/24 09:50

Matrix: Water

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.0320	U	0.0751	0.0752	1.00	0.170	pCi/L	10/28/24 08:50	11/19/24 14:09	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	84.6		30 - 110					10/28/24 08:50	11/19/24 14:09	1

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.653		0.367	0.372	1.00	0.511	pCi/L	10/28/24 08:55	11/14/24 11:37	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	84.6		30 - 110					10/28/24 08:55	11/14/24 11:37	1
Y Carrier	79.6		30 - 110					10/28/24 08:55	11/14/24 11:37	1

Method: TAL-STL Ra226 Ra228 - Combined Radium-226 and Radium-228

Michiga. IAL OILI	turro_itu		ibilica itaai	ann LL O an	a itaaiai					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.621		0.375	0.380	5.00	0.511	pCi/L		11/27/24 17:01	1

Client Sample ID: DUP-07

Lab Sample ID: 160-55983-9

Matrix: Water

Date Collected: 10/15/24 00:00 Date Received: 10/24/24 09:50

Method:	EPA 903.0	- Radium-226	(GFPC)
---------	------------------	--------------	--------

Analyte	Result	Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.0292	U	0.0479	0.0480	1.00	0.123	pCi/L	10/28/24 08:50	11/19/24 14:09	1
Carrier Ba Carrier	%Yield 93.2	Qualifier	Limits 30 - 110					Prepared 10/28/24 08:50	Analyzed 11/19/24 14:09	Dil Fac

Eurofins St. Louis

Client Sample Results

Client: Consumers Energy Job ID: 160-55983-1

Project/Site: JH Campbell Supplemental Wells

+ 228

Client Sample ID: DUP-07 Lab Sample ID: 160-55983-9

Date Collected: 10/15/24 00:00 Matrix: Water Date Received: 10/24/24 09:50

Method: EPA 90	4.0 - Radium	-228 (GFP	C)							
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.168	U	0.266	0.267	1.00	0.454	pCi/L	10/28/24 08:55	11/14/24 11:38	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	93.2		30 - 110					10/28/24 08:55	11/14/24 11:38	1
Y Carrier	88.2		30 - 110					10/28/24 08:55	11/14/24 11:38	1

Method: TAL-STL R	a226_Ra	228 - Com	bined Radi	um-226 an	nd Radiur	n-228				
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.139	U	0.270	0.271	5.00	0.454	pCi/L		11/27/24 17:01	1

Client: Consumers Energy Job ID: 160-55983-1

Project/Site: JH Campbell Supplemental Wells

Method: 903.0 - Radium-226 (GFPC)

Lab Sample ID: MB 160-685406/1-A

Matrix: Water

Matrix: Water

Analyte

Radium-226

Ba Carrier

Analysis Batch: 689273

Analysis Batch: 689273

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 685406

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.04219 Ū 0.0735 0.0736 1.00 0.130 pCi/L 10/28/24 08:50 11/19/24 14:08

Total

Count

MB

Carrier **%Yield Qualifier** Limits Prepared Analyzed Dil Fac Ba Carrier 90.2 30 - 110 10/28/24 08:50 11/19/24 14:08

Client Sample ID: Lab Control Sample

100

Prep Type: Total/NA

Prep Batch: 685406

Total

1.05

LCS LCS %Rec Uncert. Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits

0.139 pCi/L

1.00

LCS LCS Carrier %Yield Qualifier Limits

86.8

Lab Sample ID: LCS 160-685406/2-A

Lab Sample ID: 160-55983-1 DU

Matrix: Water

Analysis Batch: 689273

Client Sample ID: MW-14S

75 - 125

Prep Type: Total/NA

Prep Batch: 685406

Total Sample Sample DU DU

Spike

Added

30 - 110

9.58

9.532

RER Uncert. Analyte Result Qual $(2\sigma + / -)$ RL **MDC** Unit Result Qual RER Limit -0.0420 U -0.01553 U Radium-226 0.0695 1.00 0.148 pCi/L 0.17

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 94.1 30 - 110

Method: 904.0 - Radium-228 (GFPC)

Lab Sample ID: MB 160-685409/1-A

Matrix: Water

Analysis Batch: 688581

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 685409

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Dil Fac Analyzed Radium-228 0.528 0.533 1.00 pCi/L 10/28/24 08:55 11/14/24 12:37 0.8472 0.791

> MB MB

Carrier %Yield Qualifier Limits Prepared Dil Fac Analyzed Ba Carrier 90.2 30 - 110 10/28/24 08:55 11/14/24 12:37 30 - 110 Y Carrier 80.0 10/28/24 08:55 11/14/24 12:37

Eurofins St. Louis

10

Job ID: 160-55983-1

Client: Consumers Energy Project/Site: JH Campbell Supplemental Wells

Method: 904.0 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCS 160-685409/2-A

Matrix: Water

Analysis Batch: 688429

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 685409

Prep Type: Total/NA

Prep Batch: 685409

Prep Type: Total/NA

Prep Batch: 689277

Total

Spike LCS LCS Uncert. %Rec **MDC** Unit Analyte Added Result Qual $(2\sigma + / -)$ RL%Rec Limits Radium-228 8.34 9.177 1.53 1.00 0.900 pCi/L 110 75 - 125

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 86.8 30 - 110 Y Carrier 81.1 30 - 110

Lab Sample ID: 160-55983-1 DU Client Sample ID: MW-14S

Matrix: Water

Analysis Batch: 688581

Total

Sample Sample DU DU Uncert. **RER** Analyte RL **MDC** Unit Result Qual Result Qual $(2\sigma + / -)$ RER Limit Radium-228 1.19 0.9230 0.519 1.00 0.750 pCi/L 0.24

DU DU

Carrier %Yield Qualifier Limits 30 - 110 Ba Carrier 94 1 Y Carrier 82.6 30 - 110

Lab Sample ID: MB 160-689277/1-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 690739

Total

Count

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-228 0.7175 0.390 0.395 1.00 0.549 pCi/L 11/19/24 08:45 11/27/24 12:04

> MΒ MΒ

Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 93.4 30 - 110 11/19/24 08:45 11/27/24 12:04 Y Carrier 78.5 30 - 110 11/19/24 08:45 11/27/24 12:04

Lab Sample ID: LCS 160-689277/2-A

Matrix: Water

Analysis Batch: 690739

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 689277

Total

Spike LCS LCS Uncert. %Rec Added Analyte Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits Radium-228 8.31 10.10 1.41 1.00 0.544 pCi/L 122 75 - 125

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 85.0 30 - 110 Y Carrier 78.1 30 - 110

Eurofins St. Louis

10

QC Sample Results

Client: Consumers Energy Job ID: 160-55983-1

Project/Site: JH Campbell Supplemental Wells

Method: 904.0 - Radium-228 (GFPC) (Continued)

Lab Sample ID: 380-122119-B-1-B DU Client Sample ID: Duplicate

Matrix: Water

Analysis Batch: 690739

Prep Type: Total/NA

Prep Batch: 689277

					iotai					
	Sample	Sample	DU	DU	Uncert.					RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit	RER	Limit
Radium-228	0.334	U	-0.02550	U	0.315	1.00	0.372	pCi/L	 0.54	1

DU DU

Carrier	%Yield Qualifier	Limits
Ba Carrier	77.2	30 - 110
Y Carrier	78.9	30 - 110

QC Association Summary

Client: Consumers Energy Project/Site: JH Campbell Supplemental Wells

Prep Batch: 685406

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-55983-1	MW-14S	Total/NA	Water	PrecSep-21	
160-55983-2	PZ-23S	Total/NA	Water	PrecSep-21	
160-55983-3	PZ-24S	Total/NA	Water	PrecSep-21	
160-55983-4	PZ-24	Total/NA	Water	PrecSep-21	
160-55983-5	PZ-40S	Total/NA	Water	PrecSep-21	
160-55983-6	PZ-40	Total/NA	Water	PrecSep-21	
160-55983-7	TW-19-05	Total/NA	Water	PrecSep-21	
160-55983-8	TW-19-06A	Total/NA	Water	PrecSep-21	
160-55983-9	DUP-07	Total/NA	Water	PrecSep-21	
MB 160-685406/1-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-685406/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
160-55983-1 DU	MW-14S	Total/NA	Water	PrecSep-21	

Prep Batch: 685409

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-55983-1	MW-14S	Total/NA	Water	PrecSep_0	
160-55983-2	PZ-23S	Total/NA	Water	PrecSep_0	
160-55983-5	PZ-40S	Total/NA	Water	PrecSep_0	
160-55983-6	PZ-40	Total/NA	Water	PrecSep_0	
160-55983-7	TW-19-05	Total/NA	Water	PrecSep_0	
160-55983-8	TW-19-06A	Total/NA	Water	PrecSep_0	
160-55983-9	DUP-07	Total/NA	Water	PrecSep_0	
MB 160-685409/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-685409/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
160-55983-1 DU	MW-14S	Total/NA	Water	PrecSep_0	

Prep Batch: 689277

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-55983-3	PZ-24S	Total/NA	Water	PrecSep_0	
160-55983-4	PZ-24	Total/NA	Water	PrecSep_0	
MB 160-689277/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-689277/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
380-122119-B-1-B DU	Duplicate	Total/NA	Water	PrecSep 0	

Job ID: 160-55983-1

Project/Site: JH Campbell Supplemental Wells

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

			Percent Yield (Acceptance Limits)
		Ва	
Lab Sample ID	Client Sample ID	(30-110)	
160-55983-1	MW-14S	78.5	
160-55983-1 DU	MW-14S	94.1	
160-55983-2	PZ-23S	93.9	
160-55983-3	PZ-24S	87.0	
160-55983-4	PZ-24	86.6	
160-55983-5	PZ-40S	92.2	
160-55983-6	PZ-40	83.9	
160-55983-7	TW-19-05	92.4	
160-55983-8	TW-19-06A	84.6	
160-55983-9	DUP-07	93.2	
LCS 160-685406/2-A	Lab Control Sample	86.8	
MB 160-685406/1-A	Method Blank	90.2	
Tracer/Carrier Legen	d		

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water Prep Type: Total/NA

				Percent Yield (Acceptance Limits)
		Ва	Υ	
Lab Sample ID	Client Sample ID	(30-110)	(30-110)	
160-55983-1	MW-14S	78.5	78.9	
160-55983-1 DU	MW-14S	94.1	82.6	
160-55983-2	PZ-23S	93.9	84.1	
160-55983-3	PZ-24S	85.8	77.0	
160-55983-4	PZ-24	93.1	78.5	
160-55983-5	PZ-40S	92.2	78.5	
160-55983-6	PZ-40	83.9	80.0	
160-55983-7	TW-19-05	92.4	85.6	
160-55983-8	TW-19-06A	84.6	79.6	
160-55983-9	DUP-07	93.2	88.2	
380-122119-B-1-B DU	Duplicate	77.2	78.9	
LCS 160-685409/2-A	Lab Control Sample	86.8	81.1	
LCS 160-689277/2-A	Lab Control Sample	85.0	78.1	
MB 160-685409/1-A	Method Blank	90.2	80.0	
MB 160-689277/1-A	Method Blank	93.4	78.5	

Ba = Ba Carrier

Y = Y Carrier

Eurofins St. Louis

ANALYTICAL REPORT

PREPARED FOR

Attn: Emil Blaj Consumers Energy 135 W Trail Street Jackson, Michigan 49201

Generated 11/27/2024 5:36:02 PM

JOB DESCRIPTION

JH Campbell Background Wells

JOB NUMBER

160-55984-1

Eurofins St. Louis 13715 Rider Trail North Earth City MO 63045

Eurofins St. Louis

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

Authorization

Generated 11/27/2024 5:36:02 PM

Authorized for release by Jayna Awalt, Project Manager II Jayna.Awalt@et.eurofinsus.com Designee for Micha Korrinhizer, Project Manager Micha.Korrinhizer@et.eurofinsus.com (314)298-8566

Client: Consumers Energy Project/Site: JH Campbell Background Wells Laboratory Job ID: 160-55984-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Chain of Custody	6
Receipt Checklists	7
Definitions/Glossary	8
Method Summary	9
Sample Summary	10
Client Sample Results	11
QC Sample Results	17
QC Association Summary	20
Tracer Carrier Summary	21

4

0

8

9

10

Case Narrative

Client: Consumers Energy

Project: JH Campbell Background Wells

Job ID: 160-55984-1 Eurofins St. Louis

Job Narrative 160-55984-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition, all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method.

Eurofins Environment Testing attests to the validity of the laboratory data generated by Eurofins facilities reported herein. All analyses performed by Eurofins Environment Testing facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins Environment Testing's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Calculations are performed before rounding to avoid round-off errors in calculated results.

Proper preservation was noted for the methods performed on these samples, unless otherwise detailed below.

All soil/sediment sample results for radiochemistry analyses are based upon sample as dried and disaggregated with the exception of tritium, carbon-14, and iodine-129 by gamma spectroscopy or unless requested as wet weight by the client.

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative.

Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

The matrix for the Method Blank and LCS/LCSD is as close to the samples as can be reasonably achieved. Detailed information can be found in the most current revision of the associated SOP.

The method blank (MB) z-score is within limits, unless stated otherwise below, and is stored in the level IV raw data.

This laboratory report is confidential and is intended for the sole use of Eurofins Environment Testing and its client.

No additional analytical or quality issues were noted, other than those described below or in the Definitions/ Glossary page.

Receipt

The samples were received on 10/24/2024 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved. The temperature of the cooler at receipt time was 19.8°C.

Receipt Exceptions

The following sample was received at the laboratory without a sample collection time documented on the chain of custody: DUP-01 (160-55984-7). The laboratory was instructed to use a sample collection time of 12:00am. Samplers name is not on the COC. JHC-MW-15023 (160-55984-1), JHC-MW-15024 (160-55984-2), JHC-MW-15025 (160-55984-3), JHC-MW-15026 (160-55984-4), JHC-MW-15027 (160-55984-5), JHC-MW-15028 (160-55984-6), DUP-01 (160-55984-7), FB-01 (160-55984-8) and EB-01 (160-55984-9)

Method 903.0 - Radium-226 (GFPC)

Samples JHC-MW-15023 (160-55984-1), JHC-MW-15024 (160-55984-2), JHC-MW-15025 (160-55984-3), JHC-MW-15026 (160-55984-4), JHC-MW-15027 (160-55984-5), JHC-MW-15028 (160-55984-6), DUP-01 (160-55984-7), FB-01 (160-55984-8) and EB-01 (160-55984-9) were analyzed for Radium-226 (GFPC). The samples were prepared on 10/28/2024 and analyzed on 11/19/2024.

Method 904.0 - Radium-228 (GFPC)

Samples JHC-MW-15023 (160-55984-1), JHC-MW-15024 (160-55984-2), JHC-MW-15025 (160-55984-3), JHC-MW-15026 (160-55984-4), JHC-MW-15027 (160-55984-5), JHC-MW-15028 (160-55984-6), DUP-01 (160-55984-7), FB-01 (160-55984-8) and EB-01 (160-55984-9) were analyzed for Radium-228 (GFPC). The samples were prepared on 10/28/2024 and 11/19/2024 and analyzed on 11/14/2024 and 11/27/2024.

Eurofins St. Louis

Page 4 of 21 11/27/2024

Job ID: 160-55984-1

8

5

U

8

4.0

4

11

Case Narrative

Client: Consumers Energy

Project: JH Campbell Background Wells

Job ID: 160-55984-1 (Continued)

Eurofins St. Louis

Job ID: 160-55984-1

Method Ra226_Ra228 - Combined Radium-226 and Radium-228

Samples JHC-MW-15023 (160-55984-1), JHC-MW-15024 (160-55984-2), JHC-MW-15025 (160-55984-3), JHC-MW-15026 (160-55984-4), JHC-MW-15027 (160-55984-5), JHC-MW-15028 (160-55984-6), DUP-01 (160-55984-7), FB-01 (160-55984-8) and EB-01 (160-55984-9) were analyzed for Combined Radium-226 and Radium-228. The samples were analyzed on 11/27/2024.

Eurofins St. Louis

Page 5 of 21 11/27/2024

Client Information Description Collent Contact Phore Emil Big Phore Company Company Company Table Due Date In Due	Phone Due Date Requested: TAT Requested (days)			Korrin	A.A.			Carrier Tracking No(s).	
y com	ne Date Requested: Requested (days)				Korrinhizer, Micha L	ha L			160-11904-5895 1
y com	Date Requested: Requested (days)		4	E-Mail Mich	a.Korrinhiz	er@et.6	E-Mail: Micha.Korrinhizer@et.eurofinsus.com	State of Origin:	Page.
y.com	Date Requested: Requested (days)		PWSID				Analysis Reguested	postod	#40C
y.com	Requested (days)						-		Preservation Codes:
omsenergy.com		22 BD					culatio	_	SONE IN
88-5888 laj@cmsenergy.com Name impbell Background Wells	Compliance Project:	oN ∆ Sev	No				SZ8 cal		
	#24101083 / PO4400121591	04400121	591			2,00	-E9/9Z		
	#					. Gr		160-55984 Chain of Custody	
	ect #: 0857				M 10 2	_	_		11E
	#M				SD (Ye		22 - Dd		other:
Sample Hantification		0		Matrix (W=water S=soild, O=wasteloil,	etlo Filtered S MS/M mache MS/m - Radium-S	Z-muibsЯ - 0.4(3556R3228_GF		o 19dmuh list
	Sample Date		Preservation Code	BT=Tissue, A=Air)	a X	200	28 2		Special Instructions/Not
JHC-MW-15023	10/14/24	1706		Water	×	-	: ×		2
JHC-MW-15024	10/14/24	1856		Water	×	×	×		2
JHC-MW-15025	10/14/24	2011		Water	×	×	×		2
JHC-MW-15026	10/15/24	0856		Water	×	×	×		2
JHC-MW-15027	10/15/24	1031		Water	×	×	×		2
JHC-MW-15028	10/15/24	1150		Water	×	×	×		2
DUP-01	10/14/24	1		Water	×	×	×		2
FB-01 10	10/15/24	1222		Water	×	×	×		2
EB-01 10/	10/15/24	1210		Water	×	×	×		2
Possible Hazard Identification					Sample	Dispo	sal (A fee may be ass	essed if samples are rea	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
ested: I, II, III, IV, Other (specify)	र्		Radiological		Special	Instruct	Special Instructions/QC Requirements	oosal By Lab	Archive For Months
linquished by:	Date	te:			Time:			Method of Shipment	
7	لدر) ما	124	1430	Company Company	Rece	Received by:	UPS	Date/Time:	Company
Natinglashed by Undertried by Undertried by Underfrine	Time		Ö	Company	Rece	Received by:	M. Pinetta	Date/Time 000	2024 0950 Company
Date/Time	ı ime		Ō.	Сотралу	Rece	Received by:	Meadow Pinette	Date/Time	Сомрану

Environment Testing

Login Sample Receipt Checklist

Client: Consumers Energy Job Number: 160-55984-1

Login Number: 55984 List Source: Eurofins St. Louis

List Number: 1

Creator: Pinette, Meadow L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Samplers name is not on the COC
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	No ttime on COC or sample containers on sample 7
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

4

5

_

4

9

10

11

12

Definitions/Glossary

Client: Consumers Energy Job ID: 160-55984-1

Project/Site: JH Campbell Background Wells

Qualifiers

Rad

Qualifier **Qualifier Description**

Result is less than the sample detection limit.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

Percent Recovery %R **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Method Summary

Client: Consumers Energy

Project/Site: JH Campbell Background Wells

Method	Method Description	Protocol	Laboratory
903.0	Radium-226 (GFPC)	EPA	EET SL
904.0	Radium-228 (GFPC)	EPA	EET SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	EET SL
PrecSep_0	Preparation, Precipitate Separation	None	EET SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	EET SL

Protocol References:

EPA = US Environmental Protection Agency

None = None

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Job ID: 160-55984-1

3

4

5

7

8

9

10

11

12

Sample Summary

Client: Consumers Energy Project/Site: JH Campbell Background Wells

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
160-55984-1	JHC-MW-15023	Water	10/14/24 17:06	10/24/24 09:50
160-55984-2	JHC-MW-15024	Water	10/14/24 18:56	10/24/24 09:50
160-55984-3	JHC-MW-15025	Water	10/14/24 20:11	10/24/24 09:50
160-55984-4	JHC-MW-15026	Water	10/15/24 08:56	10/24/24 09:50
160-55984-5	JHC-MW-15027	Water	10/15/24 10:31	10/24/24 09:50
160-55984-6	JHC-MW-15028	Water	10/15/24 11:50	10/24/24 09:50
160-55984-7	DUP-01	Water	10/14/24 00:00	10/24/24 09:50
160-55984-8	FB-01	Water	10/15/24 12:22	10/24/24 09:50
160-55984-9	EB-01	Water	10/15/24 12:10	10/24/24 09:50

Job ID: 160-55984-1

Client: Consumers Energy Job ID: 160-55984-1

Project/Site: JH Campbell Background Wells

Client Sample ID: JHC-MW-15023

Lab Sample ID: 160-55984-1

Date Collected: 10/14/24 17:06 **Matrix: Water** Date Received: 10/24/24 09:50

Method: EPA 90	3.0 - Radium	-226 (GFP	C)							
		·	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0956	U	0.0891	0.0895	1.00	0.137	pCi/L	10/28/24 08:50	11/19/24 14:09	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.6		30 - 110					10/28/24 08:50	11/19/24 14:09	

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.451	U	0.350	0.352	1.00	0.541	pCi/L	10/28/24 08:55	11/14/24 11:38	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.6		30 - 110					10/28/24 08:55	11/14/24 11:38	1
Y Carrier	80.4		30 - 110					10/28/24 08:55	11/14/24 11:38	1

Method: TAL-STL F	Ra226_Ra	228 - Com	bined Radi	ium-226 ar	nd Radiur	n-228				
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.546		0.361	0.363	5.00	0.541	pCi/L		11/27/24 17:01	1

Client Sample ID: JHC-MW-15024 Lab Sample ID: 160-55984-2 Date Collected: 10/14/24 18:56 **Matrix: Water** Date Received: 10/24/24 09:50

Method: EPA 903.0	- Radium	-226 (GFP	C)							
		•	Count	Total						
A	Daault	O!!fi	Uncert.	Uncert.	DI	MDC	1114	Duamanad	A a l a al	Dil Faa
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL _	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0662	U	0.104	0.104	1.00	0.178	pCi/L	10/28/24 08:50	11/19/24 14:09	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	88.0		30 - 110					10/28/24 08:50	11/19/24 14:09	1

Method: EPA 90	4.0 - Radium	-228 (GFP	C)							
		•	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.467	U	0.384	0.386	1.00	0.601	pCi/L	10/28/24 08:55	11/14/24 11:38	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	88.0		30 - 110					10/28/24 08:55	11/14/24 11:38	1
Y Carrier	81.9		30 - 110					10/28/24 08:55	11/14/24 11:38	1

Eurofins St. Louis

Lab Sample ID: 160-55984-2

Matrix: Water

Date Collected: 10/14/24 18:56 Date Received: 10/24/24 09:50

	_		Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.533	U	0.398	0.400	5.00	0.601	pCi/L		11/27/24 17:01	1

Client Sample ID: JHC-MW-15025

Date Collected: 10/14/24 20:11 Date Received: 10/24/24 09:50 Lab Sample ID: 160-55984-3

Matrix: Water

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.128		0.0857	0.0864	1.00	0.112	pCi/L	10/28/24 08:50	11/19/24 17:24	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.5		30 - 110					10/28/24 08:50	11/19/24 17:24	1

Method: EPA 904	.0 - Radium	-228 (GFP	C)							
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.586		0.386	0.390	1.00	0.573	pCi/L	10/28/24 08:55	11/14/24 11:38	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.5		30 - 110					10/28/24 08:55	11/14/24 11:38	1
Y Carrier	77.4		30 - 110					10/28/24 08:55	11/14/24 11:38	1

Method: TAL-STL Ra226 Ra228 - Combined Radium-226 and Radium-228

Method. IAL-STE	Nazzo_ina	220 - 00111	Dilled Kaul	uiii-220 aii	u itauiui	11-220				
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.714		0.395	0.399	5.00	0.573	pCi/L		11/27/24 17:01	1

Client Sample ID: JHC-MW-15026

Lab Sample ID: 160-55984-4 Date Collected: 10/15/24 08:56 **Matrix: Water** Date Received: 10/24/24 09:50

Me	ethod:	EPA	903.0 -	Radiu	m-226	(GFPC)

		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0526	U	0.0663	0.0665	1.00	0.109	pCi/L	10/28/24 08:50	11/19/24 17:24	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.4		30 - 110					10/28/24 08:50	11/19/24 17:24	1

Eurofins St. Louis

Client Sample ID: JHC-MW-15026

Date Collected: 10/15/24 08:56 Date Received: 10/24/24 09:50

Lab Sample ID: 160-55984-4

Matrix: Water

		(0	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.497	U	0.394	0.397	1.00	0.617	pCi/L	10/28/24 08:55	11/14/24 11:38	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.4		30 - 110					10/28/24 08:55	11/14/24 11:38	1
Y Carrier	80.0		30 - 110					10/28/24 08:55	11/14/24 11:38	1

Method: TAL-STL Ra226 Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.550	U	0.400	0.403	5.00	0.617	pCi/L		11/27/24 17:01	1
+ 228										

Client Sample ID: JHC-MW-15027

Date Collected: 10/15/24 10:31 Date Received: 10/24/24 09:50

Lab Sample ID: 160-55984-5

Matrix: Water

Method: EPA 903.0 - Radium-226 (GEPC)

Welliou. EFA 30	3.0 - Kaululli	-220 (GFP	U)							
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0590	U	0.0633	0.0636	1.00	0.0985	pCi/L	10/28/24 08:50	11/19/24 17:24	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	88.3		30 - 110					10/28/24 08:50	11/19/24 17:24	1

Method: EPA 904.0 - Radium-228 (GFPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.828		0.391	0.399	1.00	0.528	pCi/L	10/28/24 08:55	11/14/24 11:40	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	88.3		30 - 110					10/28/24 08:55	11/14/24 11:40	1
Y Carrier	81.1		30 - 110					10/28/24 08:55	11/14/24 11:40	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	iotai						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.887		0.396	0.404	5.00	0.528	pCi/L		11/27/24 17:01	1
226 + 228										

Job ID: 160-55984-1

Project/Site: JH Campbell Background Wells

Client Sample ID: JHC-MW-15028

Lab Sample ID: 160-55984-6 Date Collected: 10/15/24 11:50 **Matrix: Water**

Date Received: 10/24/24 09:50

Client: Consumers Energy

Method: EPA 903.	0 - Radium	-226 (GFP	C)							
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0172	U	0.0594	0.0594	1.00	0.116	pCi/L	10/28/24 08:50	11/19/24 17:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	90.5		30 - 110					10/28/24 08:50	11/19/24 17:25	1

Method: EPA 90	4.0 - Radium	-228 (GFP	C)							
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.113	U	0.319	0.320	1.00	0.566	pCi/L	10/28/24 08:55	11/14/24 11:40	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	90.5		30 - 110					10/28/24 08:55	11/14/24 11:40	1
Y Carrier	79.3		30 - 110					10/28/24 08:55	11/14/24 11:40	1

Method: TAL-STL R	a226_Ra	228 - Con	nbined Radi	um-226 a	nd Radiui	m-228				
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.130	U	0.324	0.325	5.00	0.566	pCi/L		11/27/24 17:01	1
+ 228										

Client Sample ID: DUP-01 Lab Sample ID: 160-55984-7 Date Collected: 10/14/24 00:00 **Matrix: Water** Date Received: 10/24/24 09:50

Method: EPA 9	03.0 - Radium	-226 (GFP	C)							
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.00494	U	0.0520	0.0520	1.00	0.113	pCi/L	10/28/24 08:50	11/19/24 17:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.8		30 - 110					10/28/24 08:50	11/19/24 17:25	1

Method: EPA 90	4.0 - Radium	-228 (GFP	C)							
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.508	U	0.379	0.382	1.00	0.576	pCi/L	11/19/24 08:45	11/27/24 12:05	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	89.1		30 - 110					11/19/24 08:45	11/27/24 12:05	1
Y Carrier	76.6		30 - 110					11/19/24 08:45	11/27/24 12:05	1

Client: Consumers Energy

+ 228

Project/Site: JH Campbell Background Wells

Client Sample ID: DUP-01

Lab Sample ID: 160-55984-7

Matrix: Water

Date Collected: 10/14/24 00:00 Date Received: 10/24/24 09:50

Method: TAL-STL Ra226 Ra228 - Combined Radium-226 and Radium-228

Mictiloa. IAL OIL I	u		ibilica itaai	am LLO am	a itaaiai	II LLU			
			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.503	U	0.383	0.386	5.00	0.576 pCi/L		11/27/24 17:00	1

Lab Sample ID: 160-55984-8 Client Sample ID: FB-01

Date Collected: 10/15/24 12:22 **Matrix: Water**

Date Received: 10/24/24 09:50

Method: EPA 903.0 - Radium-226 (GFPC) Count Total Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.00368 U 0.0544 0.0544 1.00 0.115 pCi/L 10/28/24 08:50 11/19/24 17:25 Carrier **%Yield Qualifier** Limits Prepared Analyzed Dil Fac Ba Carrier 91.9 30 - 110 10/28/24 08:50 11/19/24 17:25

Method: EPA 904.0 - Radium-228 (GFPC) Count Total Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-228 10/28/24 08:55 11/14/24 11:40 0.524 U 0.373 0.376 1.00 0.565 pCi/L Carrier **%Yield Qualifier** Limits Prepared Analyzed Dil Fac Ba Carrier 91.9 30 - 110 10/28/24 08:55 11/14/24 11:40 Y Carrier 78.1 30 - 110 10/28/24 08:55 11/14/24 11:40

Method: TAL-STL Ra226 Ra228 - Combined Radium-226 and Radium-228

			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Uni	it Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.527	U	0.377	0.380	5.00	0.565 pCi	i/L	11/27/24 17:01	1

Client Sample ID: EB-01 Lab Sample ID: 160-55984-9

Date Collected: 10/15/24 12:10 Date Received: 10/24/24 09:50

Method: EPA 903.0 - Radium-226 (GFPC) Count Total Uncert. Uncert. Result Qualifier Analyte $(2\sigma + / -)$ $(2\sigma + / -)$ **MDC** Unit RL Prepared Analyzed Dil Fac Radium-226 10/28/24 08:50 11/19/24 17:26 0.00529 U 0.0553 0.0553 1.00 0.115 pCi/L **%Yield Qualifier** Limits Carrier Prepared Analyzed Dil Fac Ba Carrier 96.8 30 - 110 10/28/24 08:50 11/19/24 17:26

Eurofins St. Louis

Matrix: Water

Client Sample Results

Client: Consumers Energy Job ID: 160-55984-1

Project/Site: JH Campbell Background Wells

Client Sample ID: EB-01 Lab Sample ID: 160-55984-9

Date Collected: 10/15/24 12:10 **Matrix: Water** Date Received: 10/24/24 09:50

Method: EPA 90	4.0 - Radium	-228 (GFP	C)							
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.285	U	0.280	0.281	1.00	0.447	pCi/L	10/28/24 08:55	11/14/24 11:40	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	96.8		30 - 110					10/28/24 08:55	11/14/24 11:40	1
Y Carrier	82.2		30 - 110					10/28/24 08:55	11/14/24 11:40	1

Method: TAL-STL R	a226_Ra	228 - Com	bined Radi	um-226 an	d Radiur	n-228				
	_		Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.290	U	0.285	0.286	5.00	0.447	pCi/L		11/27/24 17:01	1

Client: Consumers Energy Job ID: 160-55984-1

Project/Site: JH Campbell Background Wells

Method: 903.0 - Radium-226 (GFPC)

Lab Sample ID: MB 160-685406/1-A

Lab Sample ID: LCS 160-685406/2-A

Matrix: Water

Analysis Batch: 689273

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 685406

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.04219 U 0.0735 0.0736 1.00 0.130 pCi/L 10/28/24 08:50 11/19/24 14:08

Total

MB

Carrier **%Yield Qualifier** Limits Prepared Analyzed Dil Fac Ba Carrier 90.2 30 - 110 10/28/24 08:50 11/19/24 14:08

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 685406

Total

LCS LCS %Rec **Spike** Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-226 9.58 9.532 1.05 1.00 0.139 pCi/L 100 75 - 125

Count

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 86.8 30 - 110

Lab Sample ID: 160-55983-B-1-C DU **Client Sample ID: Duplicate**

Matrix: Water

Matrix: Water

Analysis Batch: 689273

Prep Type: Total/NA **Analysis Batch: 689273**

Total

Prep Batch: 685406

Sample Sample DU DU **RER** Uncert. Analyte Result Qual $(2\sigma + / -)$ RL **MDC** Unit Result Qual RER Limit -0.0420 U -0.01553 U Radium-226 0.0695 1.00 0.148 pCi/L 0.17

DU DU Carrier %Yield Qualifier

Limits Ba Carrier 94.1 30 - 110

Method: 904.0 - Radium-228 (GFPC)

Lab Sample ID: MB 160-685409/1-A

Matrix: Water

Analysis Batch: 688581 Prep Batch: 685409 Count Total

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Dil Fac Analyzed Radium-228 0.528 0.533 1.00 pCi/L 10/28/24 08:55 11/14/24 12:37 0.8472 0.791

> MB MB

Carrier %Yield Qualifier Limits Prepared Dil Fac Analyzed Ba Carrier 90.2 30 - 110 10/28/24 08:55 11/14/24 12:37 30 - 110 Y Carrier 80.0 10/28/24 08:55 11/14/24 12:37

11/27/2024

10

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 160-55984-1

Client: Consumers Energy

Project/Site: JH Campbell Background Wells

Method: 904.0 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCS 160-685409/2-A

Matrix: Water

Analysis Batch: 688429

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 685409

Spike LCS LCS Uncert. %Rec **MDC** Unit Analyte Added Result Qual $(2\sigma + / -)$ RL%Rec Limits Radium-228 8.34 9.177 1.53 1.00 0.900 pCi/L 110 75 - 125

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 86.8 30 - 110 Y Carrier 81.1 30 - 110

Lab Sample ID: 160-55983-B-1-D DU

Total

Matrix: Water

Analysis Batch: 688581

Client Sample ID: Duplicate

Prep Type: Total/NA **Prep Batch: 685409**

10

Total Sample Sample DU DU Uncert. **RER** Analyte RL **MDC** Unit Result Qual Result Qual $(2\sigma + / -)$ RER Limit 0.750 pCi/L Radium-228 1.19 0.9230 0.519 1.00 0.24

DU DU

Carrier %Yield Qualifier Limits 30 - 110 Ba Carrier 94 1 Y Carrier 82.6 30 - 110

Lab Sample ID: MB 160-689277/1-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 690739

Prep Type: Total/NA

Prep Batch: 689277

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-228 0.7175 0.390 0.395 1.00 0.549 pCi/L 11/19/24 08:45 11/27/24 12:04

Total

Count

MΒ ΜB Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 93.4 30 - 110 11/19/24 08:45 11/27/24 12:04 Y Carrier 78.5 30 - 110 11/19/24 08:45 11/27/24 12:04

Lab Sample ID: LCS 160-689277/2-A

Matrix: Water

Analysis Batch: 690739

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 689277

Total Spike LCS LCS

Uncert. %Rec Added Analyte Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits Radium-228 1.41 8.31 10.10 1.00 0.544 pCi/L 122 75 - 125

LCS LCS

Carrier	%Yield	Qualifier	Limits
Ba Carrier	85.0		30 - 110
Y Carrier	78 1		30 - 110

Eurofins St. Louis

QC Sample Results

Client: Consumers Energy Job ID: 160-55984-1

Project/Site: JH Campbell Background Wells

Method: 904.0 - Radium-228 (GFPC) (Continued)

Lab Sample ID: 380-122119-B-1-B DU

Matrix: Water

Analysis Batch: 690739

Client Sample ID: Duplicate

Prep Type: Total/NA

Prep Batch: 689277

	Total											
	Sample	Sample	DU	DU	Uncert.							RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit			RER	Limit
Radium-228	0.334	U	-0.02550	U	0.315	1.00	0.372	pCi/L			0.54	1

DU DU

Carrier	%Yield	Qualifier	Limits
Ba Carrier	77.2		30 - 110
Y Carrier	78.9		30 - 110

QC Association Summary

Client: Consumers Energy Project/Site: JH Campbell Background Wells

Prep Batch: 685406

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-55984-1	JHC-MW-15023	Total/NA	Water	PrecSep-21	
160-55984-2	JHC-MW-15024	Total/NA	Water	PrecSep-21	
160-55984-3	JHC-MW-15025	Total/NA	Water	PrecSep-21	
160-55984-4	JHC-MW-15026	Total/NA	Water	PrecSep-21	
160-55984-5	JHC-MW-15027	Total/NA	Water	PrecSep-21	
160-55984-6	JHC-MW-15028	Total/NA	Water	PrecSep-21	
160-55984-7	DUP-01	Total/NA	Water	PrecSep-21	
160-55984-8	FB-01	Total/NA	Water	PrecSep-21	
160-55984-9	EB-01	Total/NA	Water	PrecSep-21	
MB 160-685406/1-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-685406/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
160-55983-B-1-C DU	Duplicate	Total/NA	Water	PrecSep-21	

Prep Batch: 685409

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-55984-1	JHC-MW-15023	Total/NA	Water	PrecSep_0	
160-55984-2	JHC-MW-15024	Total/NA	Water	PrecSep_0	
160-55984-3	JHC-MW-15025	Total/NA	Water	PrecSep_0	
160-55984-4	JHC-MW-15026	Total/NA	Water	PrecSep_0	
160-55984-5	JHC-MW-15027	Total/NA	Water	PrecSep_0	
160-55984-6	JHC-MW-15028	Total/NA	Water	PrecSep_0	
160-55984-8	FB-01	Total/NA	Water	PrecSep_0	
160-55984-9	EB-01	Total/NA	Water	PrecSep_0	
MB 160-685409/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-685409/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
160-55983-B-1-D DU	Duplicate	Total/NA	Water	PrecSep_0	

Prep Batch: 689277

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-55984-7	DUP-01	Total/NA	Water	PrecSep_0	
MB 160-689277/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-689277/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
380-122119-B-1-B DU	Duplicate	Total/NA	Water	PrecSep 0	

Job ID: 160-55984-1

Project/Site: JH Campbell Background Wells

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

			Percent Yield (Acceptance Limits)
		Ва	
Lab Sample ID	Client Sample ID	(30-110)	
160-55983-B-1-C DU	Duplicate	94.1	
160-55984-1	JHC-MW-15023	95.6	
160-55984-2	JHC-MW-15024	88.0	
160-55984-3	JHC-MW-15025	87.5	
160-55984-4	JHC-MW-15026	94.4	
160-55984-5	JHC-MW-15027	88.3	
160-55984-6	JHC-MW-15028	90.5	
160-55984-7	DUP-01	99.8	
160-55984-8	FB-01	91.9	
160-55984-9	EB-01	96.8	
	Lab Control Sample	86.8	
LCS 160-685406/2-A			

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water Prep Type: Total/NA

				Percent Yield (Acceptance Limits)
		Ва	Υ	
Lab Sample ID	Client Sample ID	(30-110)	(30-110)	
160-55983-B-1-D DU	Duplicate	94.1	82.6	
160-55984-1	JHC-MW-15023	95.6	80.4	
160-55984-2	JHC-MW-15024	88.0	81.9	
160-55984-3	JHC-MW-15025	87.5	77.4	
160-55984-4	JHC-MW-15026	94.4	80.0	
160-55984-5	JHC-MW-15027	88.3	81.1	
160-55984-6	JHC-MW-15028	90.5	79.3	
160-55984-7	DUP-01	89.1	76.6	
160-55984-8	FB-01	91.9	78.1	
160-55984-9	EB-01	96.8	82.2	
380-122119-B-1-B DU	Duplicate	77.2	78.9	
LCS 160-685409/2-A	Lab Control Sample	86.8	81.1	
LCS 160-689277/2-A	Lab Control Sample	85.0	78.1	
MB 160-685409/1-A	Method Blank	90.2	80.0	
MB 160-689277/1-A	Method Blank	93.4	78.5	

Ba = Ba Carrier

Y = Y Carrier

Eurofins St. Louis

Page 21 of 21

12

ANALYTICAL REPORT

PREPARED FOR

Attn: Emil Blaj Consumers Energy 135 W Trail Street Jackson, Michigan 49201 Generated 11/27/2024 5:38:56 PM

JOB DESCRIPTION

JH Campbell Pond A Wells

JOB NUMBER

160-55985-1

Eurofins St. Louis 13715 Rider Trail North Earth City MO 63045

Eurofins St. Louis

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

Authorization

Generated 11/27/2024 5:38:56 PM

Authorized for release by Jayna Awalt, Project Manager II Jayna.Awalt@et.eurofinsus.com Designee for Micha Korrinhizer, Project Manager Micha.Korrinhizer@et.eurofinsus.com (314)298-8566

Client: Consumers Energy Project/Site: JH Campbell Pond A Wells Laboratory Job ID: 160-55985-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Chain of Custody	5
Receipt Checklists	6
Definitions/Glossary	7
Method Summary	8
Sample Summary	9
Client Sample Results	10
QC Sample Results	15
QC Association Summary	19
Tracer Carrier Summary	20

4

5

7

a

10

11

12

Case Narrative

Client: Consumers Energy

Project: JH Campbell Pond A Wells

Job ID: 160-55985-1 Eurofins St. Louis

Job Narrative 160-55985-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition, all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method.

Eurofins Environment Testing attests to the validity of the laboratory data generated by Eurofins facilities reported herein. All analyses performed by Eurofins Environment Testing facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins Environment Testing's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Calculations are performed before rounding to avoid round-off errors in calculated results.

Proper preservation was noted for the methods performed on these samples, unless otherwise detailed below.

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative.

Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

This laboratory report is confidential and is intended for the sole use of Eurofins Environment Testing and its client.

No additional analytical or quality issues were noted, other than those described below or in the Definitions/ Glossary page.

Receipt

The samples were received on 10/24/2024 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved. The temperature of the cooler at receipt time was 19.7°C.

Method 903.0 - Radium-226 (GFPC)

Samples JHC-MW-15006 (160-55985-1), JHC-MW-15007R (160-55985-2), JHC-MW-15008R (160-55985-3), JHC-MW-15009R (160-55985-4), JHC-MW-15011R (160-55985-5), DUP-02 (160-55985-6), FB-02 (160-55985-7) and EB-02 (160-55985-8) were analyzed for Radium-226 (GFPC). The samples were prepared on 10/28/2024 and analyzed on 11/19/2024.

Method 904.0 - Radium-228 (GFPC)

Samples JHC-MW-15006 (160-55985-1), JHC-MW-15007R (160-55985-2), JHC-MW-15008R (160-55985-3), JHC-MW-15009R (160-55985-4), JHC-MW-15011R (160-55985-5), DUP-02 (160-55985-6), FB-02 (160-55985-7) and EB-02 (160-55985-8) were analyzed for Radium-228 (GFPC). The samples were prepared on 10/28/2024 and 11/19/2024 and analyzed on 11/14/2024, 11/18/2024 and 11/27/2024.

Method Ra226 Ra228 - Combined Radium-226 and Radium-228

Samples JHC-MW-15006 (160-55985-1), JHC-MW-15007R (160-55985-2), JHC-MW-15008R (160-55985-3), JHC-MW-15009R (160-55985-4), JHC-MW-15011R (160-55985-5), DUP-02 (160-55985-6), FB-02 (160-55985-7) and EB-02 (160-55985-8) were analyzed for Combined Radium-226 and Radium-228. The samples were analyzed on 11/27/2024.

Eurofins St. Louis

Page 4 of 20

2

Job ID: 160-55985-1

3

4

5

7

10

11

12

11/27/2024

Phone (314) 298-8566 Phone (314) 298-8757				5			*	Environment Testing
ient Information	Sampler		Lab P Korri	Lab PM. Korrinhizer, Micha	ha L	Carrier Tracking No(s)		COC No:
Client Contact Emil Blaj	Phone:		E-Mail Mich	a. Korrinhiz	er@et.eur	E-Mail: State of Origin Micha Korrinhizer@et eurofinsus.com		Page Page 1 of 1
Company Consumers Energy		DWSID				Analysis Reguested	07	10 p # qop
Address 135 W Trail Street	Due Date Requested:	ij.			uc		a c	Preservation Codes:
city. Jackson	TAT Requested (days):	ys): 22 BD			oitsluo			
State, Zip; Mi, 49201	Compliance Project:	V			228 cal			
Phone. 517-788-5888	PO #: PR #24101083 / PO4400121591	PO4400121591			7e/Ra-			
Email. emil.blaj@cmsenergy.com	WO #: 24-0858			ON 10 (o)	S-69 be	160-55985 Chain of Custody	ustody	1
Project Name: JH Campbell Pond A Wells	Project # 24-0858			1 10 2			nis	
Site	SSOW#			ey) as			and the same of	Other:
o iso cité de la contraction d		d)		eld Filtered S erform MS/M3 3.0 - Radium-2	4.0 - Radium-2		o 19dmuN ist	
The racing canon	Sample Date	IIme G=grab)	Preservation Code:	d	-		01	Special Instructions/Note:
JHC-MW-15006	10/14/24	1851	Water) ×	-		~	
JHC-MW-15007R	10/14/24	1756	Water	×	×		2	
JHC-MW-15008R	10/14/24	1541	Water	×	×		2	
JHC-MW-15009R	10/14/24	1416	Water	×	×		2	
JHC-MW-15011R	10/14/24	1941	Water	×	×		2	
DUP-02	10/14/24	T	Water	×	×		2	
FB-02	10/14/24	1908	Water	×	×		2	
EB-02	10/14/24	2001	Water	×	×		2	
Possible Hazard Identification Non-Hazard — Flammable Skin Irritant	Poison B Unknown	wn Radiological	iica/	Sample	le Disposal (A 1 Beturn To Client	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	samples are retained	onger than 1 month)
Deliverable Requested: I, II, III, IV, Other (specify)	als ED			Special	Instruction	Requireme	L'an Alchive For	ror
Empty Kit Relinquished by		Date		Time:		Method	Method of Shipment	
Relinquished by	Date/Time:	2 h1 tre/-	Cempany	Recei	Received by:	UPS	Date/Time:	Company
duished by:	Date/Time:		Company	Recei		M. Pinette	OCT 2 4 20	2024C9SC COMPETER 71
יאפווין לוחסו ופת הא.	Date/Time		Company	Recei	Received by:	Mosdow Dinette	Date/Time	Company

Login Sample Receipt Checklist

Client: Consumers Energy Job Number: 160-55985-1

Login Number: 55985 List Source: Eurofins St. Louis

List Number: 1

Creator: Pinette, Meadow L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Samplers name is not on the COC
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	No time on COC or sample containers for sample 6
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	
Nesidual Officiale Officiaed.	iiue	

Page 6 of 20 11/27/2024

Л

5

_

9

10

11

12

Definitions/Glossary

Client: Consumers Energy Job ID: 160-55985-1

Project/Site: JH Campbell Pond A Wells

Qualifiers

Kad

Qualifier **Qualifier Description**

Result is less than the sample detection limit.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this	report.

₩ Listed under the "D" column to designate that the result is reported on a dry weight basis

Percent Recovery %R **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Method Summary

Client: Consumers Energy

Project/Site: JH Campbell Pond A Wells

Laboratory Method **Method Description** Protocol 903.0 Radium-226 (GFPC) EPA EET SL Radium-228 (GFPC) EPA 904.0 **EET SL** Ra226_Ra228 Combined Radium-226 and Radium-228 TAL-STL EET SL PrecSep_0 Preparation, Precipitate Separation None EET SL PrecSep-21 Preparation, Precipitate Separation (21-Day In-Growth) None EET SL

Protocol References:

EPA = US Environmental Protection Agency

None = None

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Job ID: 160-55985-1

3

4

6

7

8

9

. .

12

Sample Summary

Client: Consumers Energy Project/Site: JH Campbell Pond A Wells

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
160-55985-1	JHC-MW-15006	Water	10/14/24 18:51	10/24/24 09:50
160-55985-2	JHC-MW-15007R	Water	10/14/24 17:56	10/24/24 09:50
160-55985-3	JHC-MW-15008R	Water	10/14/24 15:41	10/24/24 09:50
160-55985-4	JHC-MW-15009R	Water	10/14/24 14:16	10/24/24 09:50
160-55985-5	JHC-MW-15011R	Water	10/14/24 19:41	10/24/24 09:50
160-55985-6	DUP-02	Water	10/14/24 00:00	10/24/24 09:50
160-55985-7	FB-02	Water	10/14/24 19:08	10/24/24 09:50
160-55985-8	EB-02	Water	10/14/24 20:01	10/24/24 09:50

Job ID: 160-55985-1

Client: Consumers Energy

Project/Site: JH Campbell Pond A Wells

Client Sample ID: JHC-MW-15006

Date Collected: 10/14/24 18:51 Date Received: 10/24/24 09:50

Lab Sample ID: 160-55985-1

Lab Sample ID: 160-55985-2

Matrix: Water

Matrix: Water

Method:	EPA 9	03.0 -	Radium	-226	(GFPC)

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.147		0.0927	0.0937	1.00	0.123	pCi/L	10/28/24 08:50	11/19/24 17:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	96.6		30 - 110					10/28/24 08:50	11/19/24 17:26	1

Analyte	Result	Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analvzed	Dil Fac
Radium-228	0.329		0.281	0.282	1.00	0.438		10/28/24 08:55	11/14/24 11:40	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	96.6		30 - 110					10/28/24 08:55	11/14/24 11:40	1
Y Carrier	88.2		30 - 110					10/28/24 08:55	11/14/24 11:40	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

	_		Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.476		0.296	0.297	5.00	0.438	pCi/L		11/27/24 17:01	1

Client Sample ID: JHC-MW-15007R

Date Collected: 10/14/24 17:56

Date Received: 10/24/24 09:50

Method: EPA 903.0 - Radium-226 (GFPC)

		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.345		0.126	0.130	1.00	0.122	pCi/L	10/28/24 08:50	11/19/24 17:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	90.5		30 - 110					10/28/24 08:50	11/19/24 17:26	1

Method: EPA 904.0 - Radium-228 (GFPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.734	U	0.515	0.519	1.00	0.779	pCi/L	11/19/24 08:45	11/27/24 12:06	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	74.1		30 - 110					11/19/24 08:45	11/27/24 12:06	1
Y Carrier	75.1		30 - 110					11/19/24 08:45	11/27/24 12:06	1

Job ID: 160-55985-1

Lab Sample ID: 160-55985-2 Client Sample ID: JHC-MW-15007R

Date Collected: 10/14/24 17:56 **Matrix: Water** Date Received: 10/24/24 09:50

	_		Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.08		0.530	0.535	5.00	0.779	pCi/L		11/27/24 17:00	1

Client Sample ID: JHC-MW-15008R Lab Sample ID: 160-55985-3

Date Collected: 10/14/24 15:41 **Matrix: Water** Date Received: 10/24/24 09:50

Method: EPA 903	3.0 - Radium	-226 (GFP	C)							
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.220	U	0.232	0.233	1.00	0.373	pCi/L	10/28/24 08:58	11/19/24 09:40	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	83.4		30 - 110					10/28/24 08:58	11/19/24 09:40	1

Method: EPA 90	4.0 - Radium	-228 (GFP	C)							
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.256	U	0.367	0.368	1.00	0.619	pCi/L	10/28/24 09:03	11/18/24 12:07	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	83.4		30 - 110					10/28/24 09:03	11/18/24 12:07	1
Y Carrier	74.8		30 - 110					10/28/24 09:03	11/18/24 12:07	1

Method: TAL-STL Ra226 Ra228 - Combined Radium-226 and Radium-228

mothod: I/tE of E i	·u ·u.		ibilioa itaai	aiii zzo ai	ia itaaiai						
			Count	Total							
			Uncert.	Uncert.							
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac	
Combined Radium 226 + 228	0.476	U	0.434	0.436	5.00	0.619	pCi/L		11/27/24 17:03	1	
+ 220											

Client Sample ID: JHC-MW-15009R Lab Sample ID: 160-55985-4 Date Collected: 10/14/24 14:16 **Matrix: Water** Date Received: 10/24/24 09:50

Method: EPA 90	3.0 - Radium	-226 (GFP	C)							
		·	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.194	U	0.154	0.155	1.00	0.217	pCi/L	10/28/24 08:58	11/19/24 09:42	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.8		30 - 110					10/28/24 08:58	11/19/24 09:42	1

10/28/24 09:03 11/18/24 12:07

Client: Consumers Energy

Project/Site: JH Campbell Pond A Wells

Client Sample ID: JHC-MW-15009R

Lab Sample ID: 160-55985-4

Date Collected: 10/14/24 14:16 **Matrix: Water** Date Received: 10/24/24 09:50

Method: EPA 904	.0 - Radium	-228 (GFP	C)							
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.629	U	0.453	0.456	1.00	0.690	pCi/L	10/28/24 09:03	11/18/24 12:07	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.8		30 - 110					10/28/24 09:03	11/18/24 12:07	1

Method: TAL-STL F	Ra226_Ra	228 - Com	bined Radi	um-226 an	d Radiur	n-228				
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.823		0.478	0.482	5.00	0.690	pCi/L		11/27/24 17:03	1

30 - 110

Client Sample ID: JHC-MW-15011R

71.4

Lab Sample ID: 160-55985-5 Date Collected: 10/14/24 19:41 **Matrix: Water**

Date Received: 10/24/24 09:50

Y Carrier

Method: EPA 903	3.0 - Radium	-226 (GFP	C)							
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.233		0.166	0.168	1.00	0.226	pCi/L	10/28/24 08:58	11/19/24 09:42	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	84.1		30 - 110					10/28/24 08:58	11/19/24 09:42	1

Method: EPA 90)4.0 - Radium	-228 (GFP	C)							
		•	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.327	U	0.413	0.415	1.00	0.687	pCi/L	10/28/24 09:03	11/18/24 12:07	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	84.1		30 - 110					10/28/24 09:03	11/18/24 12:07	1
Y Carrier	77.0		30 - 110					10/28/24 09:03	11/18/24 12:07	1

Method: TAL-STL R	a226_Ra	228 - Com	bined Radi	um-226 an	d Radiur	n-228				
	_		Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.560	U	0.445	0.448	5.00	0.687	pCi/L		11/27/24 17:03	1

Job ID: 160-55985-1

Client: Consumers Energy

Project/Site: JH Campbell Pond A Wells

Lab Sample ID: 160-55985-6 **Client Sample ID: DUP-02** Date Collected: 10/14/24 00:00

Matrix: Water

Date Received: 10/24/24 09:50

Method: EPA 903.0 - Radium-226 ((GFPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.262		0.162	0.164	1.00	0.197	pCi/L	10/28/24 08:58	11/19/24 09:42	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	85.3		30 - 110					10/28/24 08:58	11/19/24 09:42	1

Method: EPA 904.0 - Radium-228 (GFPC)

Analyte	Result	Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.730		0.404	0.409	1.00	0.573	pCi/L	10/28/24 09:03	11/18/24 12:07	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	85.3		30 - 110					10/28/24 09:03	11/18/24 12:07	1
Y Carrier	82.2		30 - 110					10/28/24 09:03	11/18/24 12:07	1

Method: TAL-STL Ra226 Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
Analyte	Result	Qualifier	Uncert. (2σ+/-)	Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.991		0.435	0.441	5.00	0.573	pCi/L	_	11/27/24 17:03	1

Client Sample ID: FB-02

Date Collected: 10/14/24 19:08 Date Received: 10/24/24 09:50

Method: EPA 903.0 - Radium-226 (GFPC)

			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0179	U	0.124	0.124	1.00	0.249	pCi/L	10/28/24 08:58	11/19/24 09:42	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	88.5		30 - 110					10/28/24 08:58	11/19/24 09:42	1

Method: FPA 904.0 - Radium-228 (GFPC)

- Kaululli	-220 (GFP	U)							
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.384	U	0.420	0.421	1.00	0.686	pCi/L	10/28/24 09:03	11/18/24 12:08	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
88.5		30 - 110					10/28/24 09:03	11/18/24 12:08	1
79.3		30 - 110					10/28/24 09:03	11/18/24 12:08	1
	Result 0.384 %Yield 88.5	Result Qualifier 0.384 U %Yield Qualifier 88.5	Result 0.384 Qualifier Uncert. (2σ+/-) %Yield 88.5 Qualifier Limits 30 - 110	Result 0.384 Qualifier Uncert. (2σ+/-) (2σ+/-) (2σ+/-) (2σ+/-) %Yield 88.5 Qualifier Limits 30 - 110	Count Uncert. Uncert. Uncert.	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. White Uncert. U	Count Uncert. Uncert. Variety Variety	Result 0.384 Qualifier Uncert. (2σ+/-) (2σ+/-) RL 0.421 MDC 0.686 Unit Prepared pCi/L Analyzed 10/28/24 09:03 Analyzed 11/18/24 12:08 %Yield 88.5 30 - 110 30 - 110 40 - 10/28/24 09:03 11/18/24 12:08

Eurofins St. Louis

Lab Sample ID: 160-55985-7

Matrix: Water

Client Sample Results

Client: Consumers Energy Job ID: 160-55985-1

Project/Site: JH Campbell Pond A Wells

Lab Sample ID: 160-55985-7 **Client Sample ID: FB-02**

Date Collected: 10/14/24 19:08 **Matrix: Water** Date Received: 10/24/24 09:50

Method: TAL-STL Ra226 Ra228 - Combined Radium-226 and Radium-228

	 :									
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.402	U	0.438	0.439	5.00	0.686	pCi/L		11/27/24 17:03	1

Lab Sample ID: 160-55985-8 **Client Sample ID: EB-02**

Date Collected: 10/14/24 20:01 **Matrix: Water**

Date Received: 10/24/24 09:50

0.317 U

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.142	U	0.145	0.145	1.00	0.227	pCi/L	10/28/24 08:58	11/19/24 09:42	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.3		30 - 110					10/28/24 08:58	11/19/24 09:42	1

Method: EPA 904	4.0 - Radium	-228 (GFP	C)							
		•	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.174	U	0.280	0.280	1.00	0.478	pCi/L	10/28/24 09:03	11/18/24 12:08	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.3		30 - 110					10/28/24 09:03	11/18/24 12:08	1
Y Carrier	83.0		30 - 110					10/28/24 09:03	11/18/24 12:08	1

Method: TAL-S	STL Ra226_Ra228 - Comb	ined Radi	um-226 and	I Radium	1-228			
		Count	Total					
		Uncert.	Uncert.					
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac

5.00

0.478 pCi/L

0.315

0.315

+ 228

Combined Radium 226

11/27/24 17:03

Job ID: 160-55985-1

Client: Consumers Energy Project/Site: JH Campbell Pond A Wells

Method: 903.0 - Radium-226 (GFPC)

Lab Sample ID: MB 160-685406/1-A

Matrix: Water

Matrix: Water

Analysis Batch: 689273

Analysis Batch: 689273

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 685406

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.04219 U 0.0735 0.0736 1.00 0.130 pCi/L 10/28/24 08:50 11/19/24 14:08

Total

Count

MB

Carrier **%Yield Qualifier** Limits Prepared Analyzed Dil Fac Ba Carrier 90.2 30 - 110 10/28/24 08:50 11/19/24 14:08

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 685406

10

Total LCS LCS %Rec **Spike** Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-226 9.58 9.532 1.05 1.00 0.139 pCi/L 100 75 - 125

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 86.8 30 - 110

Lab Sample ID: LCS 160-685406/2-A

Lab Sample ID: 160-55983-B-1-C DU **Client Sample ID: Duplicate**

Matrix: Water

Analysis Batch: 689273

Prep Type: Total/NA

Prep Batch: 685406

Total Sample Sample DU DU **RER** Uncert. Analyte Result Qual $(2\sigma + / -)$ RL **MDC** Unit Result Qual RER Limit -0.0420 U -0.01553 U Radium-226 0.0695 1.00 0.148 pCi/L 0.17

DU DU Carrier %Yield Qualifier Limits Ba Carrier 94.1 30 - 110

Lab Sample ID: MB 160-685410/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 689264

Prep Type: Total/NA

Prep Batch: 685410

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac 10/28/24 08:58 11/19/24 09:40 Radium-226 0.07909 U 0.137 0.137 1.00 0.242 pCi/L

MΒ MB Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 84.4 30 - 110 10/28/24 08:58 11/19/24 09:40

Lab Sample ID: LCS 160-685410/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 689264

Prep Type: Total/NA

Prep Batch: 685410 Total LCS LCS Uncert. %Rec

Spike Analyte Added Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits Radium-226 9.58 8.745 1.00 0.206 pCi/L 75 - 125

Eurofins St. Louis

10

Job ID: 160-55985-1

Prep Type: Total/NA

Prep Batch: 685410

Method: 903.0 - Radium-226 (GFPC) (Continued)

Lab Sample ID: LCS 160-685410/2-A

Matrix: Water

Analysis Batch: 689264

LCS LCS

Carrier **%Yield Qualifier** Ba Carrier 954

Limits 30 - 110

Lab Sample ID: 160-55986-A-9-C DU

Matrix: Water

Analyte

Radium-226

Analysis Batch: 689273

Client Sample ID: Duplicate Prep Type: Total/NA

0.221 pCi/L

1.00

Prep Batch: 685410

0.13

Client Sample ID: Lab Control Sample

RER RL **MDC** Unit RER Limit

DU DU

Carrier **%Yield Qualifier**

Limits Ba Carrier 103 30 - 110

0.302

Method: 904.0 - Radium-228 (GFPC)

Sample Sample

Result Qual

Lab Sample ID: MB 160-685409/1-A

Matrix: Water

Analysis Batch: 688581

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 685409**

Count Total MR MR Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Radium-228 0.8472 0.528 0.533 1.00 0.791 pCi/L 10/28/24 08:55 11/14/24 12:37

Total

Uncert.

 $(2\sigma + / -)$

0.186

DU DU

Qual

Result

0.3530

ΜB MΒ

Carrier %Yield Qualifier Limits Ba Carrier 90.2 30 - 110 Y Carrier 80.0 30 - 110

10/28/24 08:55 11/14/24 12:37

Prepared

10/28/24 08:55

Lab Sample ID: LCS 160-685409/2-A

Matrix: Water

Analysis Batch: 688429

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 685409

Dil Fac

Analyzed

11/14/24 12:37

Spike LCS LCS Uncert. %Rec Added Analyte Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits 9.177 Radium-228 8.34 1.53 1.00 pCi/L 110 75 - 125

Total

LCS LCS

%Yield Qualifier Carrier I imits 30 - 110 Ba Carrier 86.8 Y Carrier 81.1 30 - 110

Lab Sample ID: MB 160-685411/1-A

Matrix: Water

Analysis Batch: 689048

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 685411

Count Total MB MB Uncert. Uncert. RL Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ **MDC** Unit Prepared Analyzed Dil Fac 10/28/24 09:03 11/18/24 12:07 Radium-228 0.9209 0.436 0.444 1.00 0.590 pCi/L

Eurofins St. Louis

Client: Consumers Energy

Project/Site: JH Campbell Pond A Wells

Job ID: 160-55985-1

Method: 904.0 - Radium-228 (GFPC) (Continued)

Lab Sample ID: MB 160-685411/1-A

Lab Sample ID: LCS 160-685411/2-A

Matrix: Water

Matrix: Water

Analysis Batch: 689048

Analysis Batch: 689048

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 685411

MB MB

%Yield Qualifier Carrier Limits Prepared Analyzed Dil Fac 10/28/24 09:03 11/18/24 12:07 Ba Carrier 84 4 30 - 110 Y Carrier 78.9 30 - 110 10/28/24 09:03 11/18/24 12:07

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 685411

Total **Spike** LCS LCS Uncert. %Rec Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-228 0.444 pCi/L 102 75 - 125 8.33 8.469 1.17 1.00

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 95.4 30 - 110 Y Carrier 83.4 30 - 110

Lab Sample ID: 160-55986-A-9-D DU **Client Sample ID: Duplicate**

Prep Type: Total/NA

Prep Batch: 685411

Matrix: Water

Analysis Batch: 689048

Total DU DU Sample Sample **RER** Uncert. Analyte Result Qual $(2\sigma + / -)$ Result Qual RL **MDC** Unit **RER** Limit Radium-228 1 41 1 218 0.402 1.00 0.22 0.443 pCi/L

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 103 30 - 110 Y Carrier 83.7 30 - 110

Lab Sample ID: MB 160-689277/1-A **Client Sample ID: Method Blank**

Total

Count

Analysis Batch: 690739

Matrix: Water Prep Type: Total/NA **Prep Batch: 689277**

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-228 0.7175 0.390 0.395 1.00 0.549 pCi/L 11/19/24 08:45 11/27/24 12:04

MB MB

Qualifier Carrier %Yield Limits Prepared Analyzed Dil Fac Ba Carrier 93.4 30 - 110 11/19/24 08:45 11/27/24 12:04 Y Carrier 78.5 30 - 110 11/19/24 08:45 11/27/24 12:04

Lab Sample ID: LCS 160-689277/2-A

Matrix: Water

Analysis Batch: 690739

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 689277

Total Spike LCS LCS Uncert. %Rec Added Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits Analyte Radium-228 8.31 10.10 1.41 1.00 0.544 pCi/L 122 75 - 125

Eurofins St. Louis

QC Sample Results

Client: Consumers Energy Job ID: 160-55985-1

Project/Site: JH Campbell Pond A Wells

Method: 904.0 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCS 160-689277/2-A Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 690739

LCS LCS

Carrier	%Yield	Qualifier	Limits
Ba Carrier	85.0		30 - 110
Y Carrier	78.1		30 - 110

Lab Sample ID: 380-122119-B-1-B DU Client Sample ID: Duplicate

Matrix: Water

Analyte

Radium-228

Analysis Batch: 690739

Prep Type: Total/NA Prep Batch: 689277

Total Sample Sample DU DU Uncert. **RER** Result Qual Result Qual (2σ+/-) RL **MDC** Unit RER Limit 0.334 U -0.02550 U 0.315 1.00 0.372 pCi/L 0.54

DU DU

 Carrier
 %Yield Ba Carrier
 Qualifier 77.2
 Limits 30 - 110

 Y Carrier
 78.9
 30 - 110

Prep Type: Total/NA Prep Batch: 689277

Ţ

6

R

10

IU

19

QC Association Summary

Client: Consumers Energy Project/Site: JH Campbell Pond A Wells

Rad

Prep Batch: 685406

Lab Sample ID 160-55985-1	Client Sample ID JHC-MW-15006	Prep Type Total/NA	Matrix Water	Method PrecSep-21	Prep Batch
160-55985-2	JHC-MW-15007R	Total/NA	Water	PrecSep-21	
MB 160-685406/1-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-685406/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
160-55983-B-1-C DU	Duplicate	Total/NA	Water	PrecSep-21	

Prep Batch: 685409

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-55985-1	JHC-MW-15006	Total/NA	Water	PrecSep_0	
MB 160-685409/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-685409/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	

Prep Batch: 685410

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-55985-3	JHC-MW-15008R	Total/NA	Water	PrecSep-21	
160-55985-4	JHC-MW-15009R	Total/NA	Water	PrecSep-21	
160-55985-5	JHC-MW-15011R	Total/NA	Water	PrecSep-21	
160-55985-6	DUP-02	Total/NA	Water	PrecSep-21	
160-55985-7	FB-02	Total/NA	Water	PrecSep-21	
160-55985-8	EB-02	Total/NA	Water	PrecSep-21	
MB 160-685410/1-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-685410/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
160-55986-A-9-C DU	Duplicate	Total/NA	Water	PrecSep-21	

Prep Batch: 685411

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-55985-3	JHC-MW-15008R	Total/NA	Water	PrecSep_0	
160-55985-4	JHC-MW-15009R	Total/NA	Water	PrecSep_0	
160-55985-5	JHC-MW-15011R	Total/NA	Water	PrecSep_0	
160-55985-6	DUP-02	Total/NA	Water	PrecSep_0	
160-55985-7	FB-02	Total/NA	Water	PrecSep_0	
160-55985-8	EB-02	Total/NA	Water	PrecSep_0	
MB 160-685411/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-685411/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
160-55986-A-9-D DU	Duplicate	Total/NA	Water	PrecSep_0	

Prep Batch: 689277

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-55985-2	JHC-MW-15007R	Total/NA	Water	PrecSep_0	
MB 160-689277/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-689277/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
380-122119-B-1-B DU	Duplicate	Total/NA	Water	PrecSep 0	

Job ID: 160-55985-1

Client: Consumers Energy

Project/Site: JH Campbell Pond A Wells

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

			Percent Yield (Acceptance Limits)
		Ва	
Lab Sample ID	Client Sample ID	(30-110)	
160-55983-B-1-C DU	Duplicate	94.1	
160-55985-1	JHC-MW-15006	96.6	
160-55985-2	JHC-MW-15007R	90.5	
160-55985-3	JHC-MW-15008R	83.4	
160-55985-4	JHC-MW-15009R	87.8	
160-55985-5	JHC-MW-15011R	84.1	
160-55985-6	DUP-02	85.3	
160-55985-7	FB-02	88.5	
160-55985-8	EB-02	99.3	
160-55986-A-9-C DU	Duplicate	103	
LCS 160-685406/2-A	Lab Control Sample	86.8	
LCS 160-685410/2-A	Lab Control Sample	95.4	
MB 160-685406/1-A	Method Blank	90.2	
	Method Blank	84.4	

Method: 904.0 - Radium-228 (GFPC)

Prep Type: Total/NA **Matrix: Water**

				Percent Yield (Acceptance Limits)
		Ва	Υ	
Lab Sample ID	Client Sample ID	(30-110)	(30-110)	
160-55985-1	JHC-MW-15006	96.6	88.2	
160-55985-2	JHC-MW-15007R	74.1	75.1	
160-55985-3	JHC-MW-15008R	83.4	74.8	
160-55985-4	JHC-MW-15009R	87.8	71.4	
160-55985-5	JHC-MW-15011R	84.1	77.0	
160-55985-6	DUP-02	85.3	82.2	
160-55985-7	FB-02	88.5	79.3	
160-55985-8	EB-02	99.3	83.0	
160-55986-A-9-D DU	Duplicate	103	83.7	
380-122119-B-1-B DU	Duplicate	77.2	78.9	
LCS 160-685409/2-A	Lab Control Sample	86.8	81.1	
LCS 160-685411/2-A	Lab Control Sample	95.4	83.4	
LCS 160-689277/2-A	Lab Control Sample	85.0	78.1	
MB 160-685409/1-A	Method Blank	90.2	80.0	
MB 160-685411/1-A	Method Blank	84.4	78.9	
MB 160-689277/1-A	Method Blank	93.4	78.5	

Ba = Ba Carrier Y = Y Carrier

Eurofins St. Louis

11/27/2024

Appendix B Data Quality Reviews

Laboratory Data Quality Review Groundwater Monitoring Event April 2024 Consumers Energy JH Campbell Background Wells

Groundwater samples were collected by Consumers Energy (CE) Laboratory Services for the April 2024 sampling event. Samples were analyzed for total metals, anions, alkalinity, and total dissolved solids by CE Laboratory Services in Jackson, Michigan. Samples were analyzed for radium by Eurofins St. Louis, located in Earth City, Missouri. The laboratory analytical results were reported in laboratory sample delivery groups (SDGs) 24-0278 and 160-53901-1.

During the April 2024 sampling event, a groundwater sample was collected from each of the following wells:

■ JHC-MW-15023 ■ JHC-MW-15024 ■ JHC-MW-15025

■ JHC-MW-15026 ■ JHC-MW-15027 ■ JHC-MW-15028

Each sample was analyzed for the following constituents:

Analyte Group	Method
Anions (Fluoride, Chloride, Sulfate)	EPA 300.0
Alkalinity (Total, Bicarbonate, Carbonate)	SM 2320B
Total Dissolved Solids (TDS)	SM 2540C
Total Metals	SW846 6020B/7470A
Radium (Ra-226, Ra-228, Combined Ra-226 & Ra-228)	EPA 903.0/904.0

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020) and the Department of Energy Evaluation of Radiochemical Data Usability (USDOE, 1997). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCS/LCSDs are used to assess the accuracy and precision of the analytical method using a clean matrix;

- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Percent recoveries for carriers, where applicable, for radiochemistry only. Carriers are used to assess the chemical yield for the preparation and/or instrument efficiency;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes;
- Overall usability of the data.

It should be noted that results for method blanks and LCSs were not provided for review by CE Laboratory Services. Therefore, potential contamination arising from laboratory sample preparation and/or analytical procedures and the accuracy of the analytical method using a clean matrix could not be evaluated for the total metals, anions, alkalinity, and TDS analyses.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data:
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- The reviewed Appendix III and IV constituents as well as alkalinity, iron, copper, magnesium, nickel, potassium, silver, sodium, vanadium, and zinc will be utilized for the purposes of an assessment monitoring program.
- Data are usable for the purposes of the assessment monitoring program.
- When the data are evaluated through an assessment monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary

- Target analytes (radium only) were not detected in the method blanks.
- One equipment blank (EB-01) and one field blank (FB-01) were collected. Target analytes were not detected in these blank samples with the following exceptions.
 - Radium-226 (0.467 +/- 0.178 pCi/L) and radium-226/228 (0.678 +/- 0.358 pCi/L) were detected in sample FB-01 at the listed concentrations. Potential false positive exists for positive radium-226 and/or radium-226/228 results with normalized absolute differences <1.96, as summarized in Attachment A.
- LCS recoveries for target analytes (radium only) were within laboratory QC limits.

- MS and MSD analyses were performed on sample JHC-MW-15025 for total metals and anions. The recoveries were within the acceptance limits. Relative percent differences were not provided by the laboratory and therefore were not evaluated; further, MS/MSD concentrations were not provided by the laboratory. However, since all recoveries were within the acceptance limits, there is no impact on data usability due to this issue.
- Laboratory duplicate analyses were not performed on a sample from this data set.
- Samples DUP-01/JHC-MW-15026 were submitted as the field duplicate pair with this data set; all criteria were met.
- Carrier recoveries were within 40-110%.

Attachment A

Summary of Data Non-Conformances for Groundwater Analytical Data
JH Campbell Background
CCR Monitoring Program
West Olive, Michigan

Samples	Collection Date	Analyte	Non-Conformance/Issue
JHC-MW-15027	4/15/2024	Radium-226 and	
3HC-WW-15021	4/13/2024	Radium-226/228	Field blank contamination; potential false positive.
JHC-MW-15025	4/15/2024	Radium-226/228	

Laboratory Data Quality Review Groundwater Monitoring Event October 2024 Consumers Energy JH Campbell Background Wells

Groundwater samples were collected by Consumers Energy (CE) Laboratory Services for the October 2024 sampling event. Samples were analyzed for total metals, anions, alkalinity, and total dissolved solids by CE Laboratory Services in Jackson, Michigan. The laboratory analytical results were reported in laboratory sample delivery group (SDG) 24-0857.

During the October 2024 sampling event, a groundwater sample was collected from each of the following wells:

■ JHC-MW-15023 ■ JHC-MW-15024 ■ JHC-MW-15025

■ JHC-MW-15026 ■ JHC-MW-15027 ■ JHC-MW-15028

Each sample was analyzed for the following constituents:

Analyte Group	Method	
Anions (Fluoride, Chloride, Sulfate)	EPA 300.0	
Alkalinity (Total, Bicarbonate, Carbonate)	SM 2320B	
Total Dissolved Solids (TDS)	SM 2540C	
Total Metals	SW846 6020B/7470A	

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCS/LCSDs are used to assess the accuracy and precision of the analytical method using a clean matrix;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects:

- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes;
- Overall usability of the data.

It should be noted that results for method blanks and LCSs were not provided for review by CE Laboratory Services. Therefore, potential contamination arising from laboratory sample preparation and/or analytical procedures and the accuracy of the analytical method using a clean matrix could not be evaluated for the total metals, anions, alkalinity, and TDS analyses.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- The reviewed Appendix III and IV constituents as well as alkalinity, iron, copper, magnesium, nickel, potassium, silver, sodium, vanadium, and zinc will be utilized for the purposes of an assessment monitoring program.
- Data are usable for the purposes of the assessment monitoring program.
- When the data are evaluated through an assessment monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary

- One equipment blank (EB-01) and one field blank (FB-01) were collected. Target analytes were not detected in these blank samples.
- MS and MSD analyses were performed on sample JHC-MW-15025 for total metals and anions. The recoveries were within the acceptance limits. Relative percent differences were not provided by the laboratory and therefore were not evaluated; further, MS/MSD concentrations were not provided by the laboratory. However, since all recoveries were within the acceptance limits, there is no impact on data usability due to this issue.
- Laboratory duplicate analyses were not performed on a sample from this data set.
- Samples DUP-01/JHC-MW-15023 were submitted as the field duplicate pair with this data set; all criteria were met.

Laboratory Data Quality Review Groundwater Monitoring Event October 2024 Consumers Energy JH Campbell Pond A, GSI, and Supplemental Wells

Groundwater samples were collected by Consumers Energy (CE) Laboratory Services for the October 2024 sampling event. Samples were analyzed for total and/or dissolved metals, anions, alkalinity, and total dissolved solids by CE Laboratory Services in Jackson, Michigan. The laboratory analytical results were reported in laboratory sample delivery groups (SDGs) 24-0859 and 24-0860.

During the October 2024 sampling event, a groundwater sample was collected from each of the following wells:

Pond A wells:

JHC-MW-15006	JHC-MW-15007R	JHC-MW-15008R

JHC-MW-15009RJHC-MW-15011R

Supplemental wells:

•	MW-14S	PZ-23S	PZ-24

■ PZ-24S ■ PZ-40S

■ TW-19-05 ■ TW-19-06A

Each sample was analyzed for one or more of the following constituents:

Analyte Group	Method	
Anions (Fluoride, Chloride, Sulfate)	EPA 300.0	
Alkalinity (Total, Bicarbonate, Carbonate)	SM 2320B	
Total Dissolved Solids (TDS)	SM 2540C	
Total and/or Dissolved Metals	SW846 6020B/7470A	

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;

- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCS/LCSDs are used to assess the accuracy and precision of the analytical method using a clean matrix;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects:
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes;
- Overall usability of the data.

It should be noted that results for method blanks and LCSs were not provided for review by CE Laboratory Services. Therefore, potential contamination arising from laboratory sample preparation and/or analytical procedures and the accuracy of the analytical method using a clean matrix could not be evaluated for the total and dissolved metals, anions, alkalinity, and TDS analyses.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- The reviewed Appendix III and IV constituents as well as alkalinity, iron, copper, magnesium, nickel, potassium, silver, sodium, vanadium, and zinc will be utilized for the purposes of an assessment monitoring program.
- Data are usable for the purposes of the assessment monitoring program.
- When the data are evaluated through an assessment monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary

 One equipment blank (EB-02) and one field blank (FB-02) were collected. Target analytes were not detected in these blank samples.

- MS and MSD analyses were performed on samples JHC-MW-15007R and TW-19-06A for total metals and anions. The recoveries were within the acceptance limits. Relative percent differences were not provided by the laboratory and therefore were not evaluated; further, MS/MSD concentrations were not provided by the laboratory. However, since all recoveries were within the acceptance limits, there is no impact on data usability due to this issue.
- Laboratory duplicate analyses were not performed on a sample from this data set.
- Samples DUP-02/JHC-MW-15008R and DUP-07/PZ-23S were submitted as the field duplicate pairs with this data set; all criteria were met.

Laboratory Data Quality Review Groundwater Monitoring Event April 2024 Consumers Energy JH Campbell Pond A and Supplemental Wells

Groundwater samples were collected by Consumers Energy (CE) Laboratory Services for the April 2024 sampling event. Samples were analyzed for total and/or dissolved metals, anions, alkalinity, and total dissolved solids by CE Laboratory Services in Jackson, Michigan. Samples were analyzed for radium by Eurofins St. Louis, located in Earth City, Missouri. The laboratory analytical results were reported in laboratory sample delivery groups (SDGs) 24-0279, 24-0281, 160-53903-1, and 160-53904-1.

During the April 2024 sampling event, a groundwater sample was collected from each of the following wells:

Pond A wells:

_		_		_	
	JHC-MW-15006		JHC-MW-15007R		JHC-MW-15008R

■ JHC-MW-15009R ■ JHC-MW-15011R

Supplemental wells:

■ MW-14S ■ PZ-23S ■ F	PZ-24
-----------------------	-------

■ PZ-24S ■ PZ-40S

■ TW-19-05 ■ TW-19-06A

Each sample was analyzed for one or more of the following constituents:

Analyte Group	Method		
Anions (Fluoride, Chloride, Sulfate)	EPA 300.0		
Alkalinity (Total, Bicarbonate, Carbonate)	SM 2320B		
Total Dissolved Solids (TDS)	SM 2540C		
Total and/or Dissolved Metals	SW846 6020B/7470A		
Radium (Ra-226, Ra-228, Combined Ra-226 & Ra-228)	EPA 903.0/904.0		

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020) and the Department of Energy Evaluation of Radiochemical Data Usability (USDOE, 1997). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCS/LCSDs are used to assess the accuracy and precision of the analytical method using a clean matrix;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Percent recoveries for carriers, where applicable, for radiochemistry only. Carriers are used to assess the chemical yield for the preparation and/or instrument efficiency;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes;
- Overall usability of the data.

It should be noted that results for method blanks and LCSs were not provided for review by CE Laboratory Services. Therefore, potential contamination arising from laboratory sample preparation and/or analytical procedures and the accuracy of the analytical method using a clean matrix could not be evaluated for the total and dissolved metals, anions, alkalinity, and TDS analyses.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- The reviewed Appendix III and IV constituents as well as alkalinity will be utilized for the purposes of an assessment monitoring program.
- Data are usable for the purposes of the assessment monitoring program.
- When the data are evaluated through an assessment monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary

- Sample DUP-02 was preserved by the laboratory upon arrival for radium; however, the sample was prepared for analysis more than 16 hours after preservation. No impact on the data usability.
- Target analytes (radium only) were not detected in the method blanks.
- One equipment blank (EB-02) and one field blank (FB-02) were collected. Target analytes were not detected in these blank samples.
- LCS recoveries for target analytes (radium only) were within laboratory QC limits with the following exception.
 - The percent recovery (%R) (4%) for radium-226 in the LCS (LCS 160-659257/2-A) associated with sample JHC-MW-15008R was below the laboratory QC limits. The laboratory noted in the case narrative that this LCS was inadvertently not spiked. Therefore, accuracy for radium-226 in sample JHC-MW-15008R could not be evaluated.
 - The %R (126%) for radium-228 in LCS (LCS 160-659258/2-A) associated with all samples in SDG 160-53904-1 and samples JHC-MW15006, JHC-MW-15007R, JHC-MW-15008R, JHC-MW-15009R, JHC-MW-15011R, DUP-02, FB-02, and EB-02 in SDG 160-53903-1 was above the laboratory QC limits. Therefore, the positive results for radium-228 in the associated samples should be considered estimated with a potential high bias, as summarized in the attached table, Attachment A. However, it should be noted that the laboratory indicated in the case narrative that this recovery was within their in-house limits. Only the limits used in the QC section of the report were used to evaluate the data.
- MS and MSD analyses were performed on samples JHC-MW-15007R and TW-19-06A for total metals and anions. The recoveries were within the acceptance limits. Relative percent differences were not provided by the laboratory and therefore were not evaluated; further, MS/MSD concentrations were not provided by the laboratory. However, since all recoveries were within the acceptance limits, there is no impact on data usability due to this issue.
- A laboratory duplicate analysis was performed on sample JHC-MW-15008R for radium-226 and radium-228; all criteria were met.
- Samples DUP-02/JHC-MW-15009R and DUP-07/PZ-24S were submitted as the field duplicate pairs with this data set; all criteria were met with the following exception.
 - The relative percent difference for TDS (40.9%) was >30% in field duplicate pair DUP-07/PZ-24S. Therefore, the positive results for TDS should be considered estimated in all groundwater samples from SDG 24-0281, as summarized in the attached table, Attachment A.
- Carrier recoveries were within 40-110%.

Attachment A

Summary of Data Non-Conformances for Groundwater Analytical Data JH Campbell Pond A and Supplemental Wells West Olive, Michigan

Samples	Collection Date	Analyte	Non-Conformance/Issue	
PZ-23S	4/16/2024			
PZ-24S	4/16/2024	Radium-228	High laboratory control sample recovery; potential high bias exists for the listed results.	
JHC-MW-15009R	4/16/2024			
MW-14S	4/16/2024			
PZ-23S	4/17/2024	Total dissolved solids		
PZ-24S	4/16/2024			
PZ-24	4/16/2024			
PZ-40S	4/17/2024		Field duplicate variability (relative percent difference above criteria); potential uncertainty exists for the listed results.	
PZ-40	4/17/2024			
TW-19-05	4/16/2024			
TW-19-06A	4/16/2024			
DUP-07	4/16/2024			

Page 1 of 1 January 2025

Appendix C April 2024 Assessment Monitoring Statistical Evaluation

Date: July 31, 2024

To: Harold D. Register, Jr., Consumers Energy

From: Sarah Holmstrom, TRC

Kristin Lowery, TRC Henry Schnaidt, TRC

Project No.: 514398.0000.0000 Phase 1 Task 2

Subject: Statistical Evaluation of April 2024 Assessment Monitoring Sampling Event,

JH Campbell Bottom Ash Pond A CCR Unit, Consumers Energy Company, West

Olive, Michigan

Consumers Energy is continuing semiannual assessment monitoring in accordance with §257.95 of the CCR Rule¹ at the JH Campbell Power Plant (JHC) Bottom Ash Pond A. The first semiannual assessment monitoring event of 2024 was conducted from April 15 through 17, 2024. In accordance with §257.95, the assessment monitoring data must be compared to Groundwater Protection Standards (GWPSs) to determine whether or not Appendix IV constituents are detected at statistically significant levels above the GWPSs. GWPSs were established in accordance with §257.95(h), as detailed in the October 15, 2018 Groundwater Protection Standards technical memorandum, which was also included in the 2018 Annual Groundwater Monitoring Report (2018 Annual Report) (TRC, January 2019). The following narrative describes the methods that were employed for comparisons to the GWPSs. The results obtained and the Sanitas™ output files are included as an attachment.

The statistical evaluation of the first semiannual assessment monitoring event for 2024 indicates that no constituents are present at statistically significant levels exceeding the GWPSs in downgradient monitoring wells at the Pond A CCR Unit.

Constituent GWPS # Downgradient Wells Observed

No constituents are present at statistically significant levels above the GWPSs.

These results are generally consistent with the results of the previous assessment monitoring data statistical evaluation, with no new statistically significant levels above the GWPSs. Consumers Energy will continue to evaluate corrective measures per §257.96 and §257.97. Consumers Energy will continue executing the self-implementing groundwater compliance schedule in conformance with §257.90 - §257.98.

¹ USEPA final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) published April 17, 2015, as amended.

Assessment Monitoring Statistical Evaluation

The downgradient compliance well network at Pond A consists of five wells (JHC-MW-15006, JHC-MW-15007R, JHC-MW-15008R, JHC-MW-15009R and JHC-MW-150011R) located south and east of Pond A. As discussed in the 2019 Annual Groundwater Monitoring and Corrective Action Report and Fourth Quarter 2019 Hydrogeological Monitoring Report for the Pond A CCR Unit dated January 2020, monitoring well JHC-MW-15008 was decommissioned and replacement monitoring well JHC-MW-15008R was installed in June 2019. As detailed in the 2021 Annual Groundwater Monitoring and Corrective Action Report, JH Campbell Power Plant, Pond A (TRC, January 2022), monitoring wells JHC-MW-15007, JHC-MW-15009, and JHC-MW-15011 were decommissioned and replacement monitoring wells JHC-MW-15007R, JHC-MW-15009R, and JHC-MW-15011R were installed in July 2021 and JHC-MW-15010 was removed from the monitoring program. For the purposes of statistical evaluation, the data sets from the replacement monitoring wells have been pooled with the former monitoring wells given that the wells were replaced to reset the screens at a lower elevation and data integrity was maintained before and after replacement. Use of the combined dataset is denoted with the "/R" to denote data from the original and replacement well are being used in the analysis.

Following the first semiannual assessment monitoring sampling event for 2024, compliance well data for Pond A were evaluated in accordance with the Groundwater Statistical Evaluation Plan (Stats Plan) (TRC, October 2017). An assessment monitoring program was developed to evaluate concentrations of CCR constituents present in the uppermost aquifer relative to acceptable levels (i.e. GWPSs). To evaluate whether or not a GWPS exceedance is statistically significant, the difference in concentration observed at the downgradient wells during a given assessment monitoring event compared to the GWPS must be large enough, after accounting for variability in the sample data, that the result is unlikely to have occurred merely by chance. Consistent with the Unified Guidance², the preferred method for comparisons to a fixed standard is confidence limits. An exceedance of the standard occurs when the 99 percent lower confidence level of the downgradient data exceeds the GWPS. Based on the number of historical observations in the representative sample population, the sample mean, the sample standard deviation, and a selected confidence level (i.e. 99 percent), an upper and lower confidence limit is calculated. The actual mean concentration of the population, with 99 percent confidence, will fall between the lower and upper confidence limits.

The concentrations observed in the downgradient wells are deemed to be a statistically significant exceedance when the 99 percent lower confidence limit of the downgradient data exceeds the GWPS. If the confidence interval straddles the GWPS (i.e. the lower confidence level is below the GWPS but the upper confidence level is above), the statistical test result indicates that there is insufficient confidence that the measured concentrations are different from the GWPS and thus there is no compelling evidence that the measured concentration is a result of a release from the CCR unit versus the inherent variability of the sample data. This statistical approach is consistent with the statistical methods for assessment monitoring presented in §257.93(f) and (g). Statistical evaluation methodologies built into the CCR Rule, and numerous other federal rules, are key in determining whether or not individually measured data points represent a concentration increase over the baseline or a fixed standard (such as a GWPS in an assessment monitoring program).

² USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Conservation and Recovery. EPA 530/R-09-007.

For each detected Appendix IV constituent, the concentrations for each well were first compared directly to the GWPS, as shown on Table 1. Constituent-well combinations that included a direct exceedance of the GWPS within the past eight monitoring events (October 2020 through April 2024 for JHC-MW-15006, JHC-MW-15008/R, and JHC-MW-15011/R and April 2019 through April 2024 for JHC-MW-15007/R and JHC-MW-15009/R) were retained for further analysis (Attachment 1). Direct comparison GWPS exceedances included the following constituent-well combinations:

- Selenium at JHC-MW-15008/R;
- Selenium at JHC-MW-15009/R; and,
- Arsenic and selenium at JHC-MW-15011/R.

Groundwater data for the constituent-well combinations with direct-comparison exceedances of a GWPS were then evaluated utilizing Sanitas™ statistical software. Sanitas™ is a software tool that is commercially available for performing statistical evaluation consistent with procedures outlined in the Unified Guidance. Within the Sanitas™ statistical program, confidence limits were used to perform the statistical comparison of compliance data to a fixed standard. Parametric or non-parametric confidence intervals were calculated, as appropriate, for each of the CCR Appendix IV parameters using a 99 percent confidence level, i.e., a significance level (α) of 0.01. The following narrative describes the methods employed, the results obtained and the Sanitas™ output files are included as an attachment.

The statistical data evaluation included the following steps:

- Review of data quality checklists for the data sets;
- Graphical representation of the monitoring data as time versus concentration by well-constituent pair;
- Outlier testing of individual data points that appear from the graphical representations as potential outliers;
- Evaluation of visual trends apparent in the graphical representations for statistical significance;
- Evaluation of percentage of non-detects for each well-constituent pair;
- Distribution of the data; and
- Calculation of the confidence intervals for each cumulative dataset.

The results of these evaluations are presented and discussed below.

Data from each round were evaluated for completeness, overall quality, and usability and were deemed appropriate for the purposes of the CCR assessment monitoring program.

Initially, the results for these well-constituent pairs were observed visually for potential outliers and trends. No outliers were apparent. Visual decreasing trends were observed for arsenic in JH-MW-15011/R and selenium in JHC-MW-15008/R (time-series plots in Attachment 1); however, the trends were not statistically significant. Groundwater conditions are re-equilibrating following capping activities at Pond A that were completed in Summer 2019. Because hydrogeologic conditions are in the process of stabilizing, temporary trending and sporadic outlier data are not unexpected. Therefore, all data is used in the statistical evaluation.

The SanitasTM software was then used to test compliance at the downgradient monitoring wells using the confidence interval method for the most recent eight compliance events. Eight independent sampling events provide the appropriate density of data as recommended per the Unified Guidance yet are collected recently enough to provide an indication of current condition. The tests were run with a per-well significance of $\alpha = 0.01$. The software outputs are included in Attachment 1 along with data reports showing the values used for the evaluation. Non-detect data was handled in accordance with the Stats Plan for the purposes of calculating the confidence intervals.

The Sanitas[™] software generates an output that includes graphs of the parametric or non-parametric confidence intervals for each well along with notes on data transformations, as appropriate. Data distributions were as follows:

Distribution	Parameter-Well Combinations
Normal	Arsenic at JHC-MW-15011/R
Normalized by natural log transformation	Selenium at JHC-MW-15008/R
Normalized by square root transformation	Selenium at JHC-MW-15009/R and JHC-MW-15011/R

The confidence interval test compares the lower confidence limit to the GWPS. The statistical evaluation of the Appendix IV constituents shows no statistically significant exceedances of the GWPSs. Arsenic was identified at downgradient monitoring well JHC-MW-15011 at statistically significant levels exceeding the GWPS during the initial assessment monitoring event conducted in June 2018. As shown in Table 1 and Attachment 1, arsenic concentrations in this well declined in 2020 and 2021 and the lower confidence limit has been below the GWPS since the second semiannual event of 2021. Consumers Energy continues to evaluate corrective measures per §257.96 and §257.97. Consumers Energy will continue executing the self-implementing groundwater compliance schedule in conformance with §257.90 - §257.98.

Attachments

Table 1 Comparison of Groundwater Sampling Results to Groundwater Protection Standards

for Statistical Evaluation

Attachment 1 Sanitas[™] Output

Comparison of Groundwater Sampling Results to Groundwater Protection Standards for Statistical Evaluation JH Campbell Pond A – RCRA CCR Monitoring Program West Olive, Michigan

		Sample Location:					JHC-MW-1500	2			
		Sample Date:	10/22/2020	10/22/2020	4/13/2021	10/21/2021	4/14/2022	10/18/2022	4/11/2023	10/17/2023	4/16/2024
	1	Campic Bate.	10/22/2020	10/22/2020	4/10/2021	10/21/2021	7/17/2022	10/10/2022	4/11/2020	10/11/2020	4/10/2024
Constituent	Unit	GWPS									
Appendix III				Field Dup							
Boron	ug/L	NA	272	331	288	371	676	765	670	757	609
Calcium	mg/L	NA	87.2	84.3	82.0	84.5	59.2	67.2	68.8	75.7	67.8
Chloride	mg/L	NA	22.0	22.2	22.9	19.6	17.0	18.3	13.3	18.3	12.5
Fluoride	ug/L	NA	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	NA	253	251	257	217	101	179	98.3	204	80.6
Total Dissolved Solids	mg/L	NA	515	511	497	485	341	458	385	552	393
pH, Field	SU	NA	7.5		7.7	7.8	7.8	8.3	7.8	8.2	8.0
Appendix IV											
Antimony	ug/L	6	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Arsenic	ug/L	10	9	6	3	6	7	7	7	8	9
Barium	ug/L	2,000	382	194	188	211	139	151	144	162	157
Beryllium	ug/L	4	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	5	1	3	2	1	< 1	1	< 1	2
Cobalt	ug/L	15	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	15	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	40	15	14	12	13	13	13	12	14	15
Mercury	ug/L	2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	100	38	37	54	48	17	24	12	19	15
Radium-226/228	pCi/L	5.00	0.318	0.453	0.673	0.634	0.395	0.663	< 0.879	0.643	< 0.517
Selenium	ug/L	50	2	1	< 1	1	5	4	16	32	25
Thallium	ug/L	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

pCi/L - picocuries per liter; SU - standard units; pH is a field parameter.

-- - not analyzed.

GWPS - Groundwater Protection Standard. GWPS is the higher of the Maximum Contaminant Level/Regional

Screening Level and Upper Tolerance Limit as established in TRC's Technical Memorandum dated October 15, 2018.

Bold value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR Rules.

- (1) JHC-MW-15008 was decommissioned on June 24, 2019. Replacement well JHC-MW-15008R was installed on June 25, 2019.
- (2) Not sampled; insufficient amount of groundwater present to collect sample.
- (3) JHCW-MW-15007, JHC-MW-15009, and JHC-MW-15011 were decommissioned in July 2021. Replacement wells JHC-MW-15007R, JHC-MW-15009R, and JHC-MW-15011R were installed on July 20-22, 2021.

Comparison of Groundwater Sampling Results to Groundwater Protection Standards for Statistical Evaluation JH Campbell Pond A – RCRA CCR Monitoring Program

West Olive, Michigan

						11000	nive, iviiciligali							
	S	Sample Location:		JI	HC-MW-1500	7 ⁽³⁾				J	HC-MW-15007	R ⁽³⁾		
		Sample Date:	4/24/2019	10/9/2019 ⁽²⁾		10/22/2020 ⁽²⁾	4/13/2021 ⁽²⁾	10/21/2021	10/21/2021	4/14/2022	10/18/2022	4/11/2023	10/17/2023	4/16/2024
Constituent	Unit	GWPS												
Appendix III									Field Dup					
Boron	ug/L	NA	190		242			956	1,000	1,370	1,350	1,290	1,630	1,900
Calcium	mg/L	NA	79		62.1			68.5	72.6	66.5	69.5	77.9	68.3	56.6
Chloride	mg/L	NA	23		14.1			13.9	14.2	11.3	12.4	13.1	17	13.9
Fluoride	ug/L	NA	< 1,000		< 1,000			< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	NA	54		83.0			101	104	69.3	102	143	118	88.4
Total Dissolved Solids	mg/L	NA	360		336			418	419	355	430	475	453	414
pH, Field	SU	NA	7.4		7.0			8.0		8.1	8.0	7.7	7.9	8.0
Appendix IV														
Antimony	ug/L	6	< 1.0		< 1			< 1	< 1	< 1	< 1	< 1	< 1	< 1
Arsenic	ug/L	10	4.0		3			7	7	8	7	5	7	6
Barium	ug/L	2,000	320		266			219	224	215	249	281	233	211
Beryllium	ug/L	4	< 1.0		< 1			< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	< 0.20		< 0.2			< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	35		2			1	2	2	< 1	< 1	< 1	1
Cobalt	ug/L	15	< 6.0		< 15			< 6	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	< 1,000		< 1,000			< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	15	< 1.0		< 1			< 1	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	40	12		14			13	13	16	14	15	14	15
Mercury	ug/L	2	< 0.20		< 0.2			< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	100	7.2		< 5			16	16	14	18	23	27	52
Radium-226/228	pCi/L	5.00	0.609		< 0.456			0.583	0.483	0.780	0.786	< 0.608	0.862	0.925
Selenium	ug/L	50	4.1		22			4	4	2	7	4	9	8
Thallium	ug/L	2	< 2.0		< 2			< 2	< 2	< 2	< 2	< 2	< 2	< 2

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

pCi/L - picocuries per liter; SU - standard units; pH is a field parameter.

-- - not analyzed.

GWPS - Groundwater Protection Standard. GWPS is the higher of the Maximum Contaminant Level/Regional

Screening Level and Upper Tolerance Limit as established in TRC's Technical Memorandum dated October 15, 2018.

Bold value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR Rules.

- (1) JHC-MW-15008 was decommissioned on June 24, 2019. Replacement well JHC-MW-15008R was installed on June 25, 2019.
- (2) Not sampled; insufficient amount of groundwater present to collect sample.
- (3) JHCW-MW-15007, JHC-MW-15009, and JHC-MW-15011 were decommissioned in July 2021. Replacement wells JHC-MW-15007R, JHC-MW-15009R, and JHC-MW-15011R were installed on July 20-22, 2021.

Comparison of Groundwater Sampling Results to Groundwater Protection Standards for Statistical Evaluation JH Campbell Pond A – RCRA CCR Monitoring Program West Olive, Michigan

					TTOOL OILTO, IVII	·gu					
	S	Sample Location:				Jŀ	IC-MW-15008F	₹ ⁽¹⁾			
		Sample Date:	10/22/2020	4/13/2021	4/13/2021	10/21/2021	4/14/2022	10/18/2022	4/10/2023	10/17/2023	4/16/2024
Constituent	Unit	GWPS									
Appendix III					Field Dup						
Boron	ug/L	NA	285	352	360	786	1,320	1,680	1,300	1,260	1,190
Calcium	mg/L	NA	109	85.4	87.0	77.2	61.6	71.6	75.7	52.9	56
Chloride	mg/L	NA	18.8	17.2	17.1	15.7	12.2	13.6	13.4	15.5	14.7
Fluoride	ug/L	NA	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	NA	215	185	186	112	80.3	85.3	107	67	80.2
Total Dissolved Solids	mg/L	NA	577	517	512	443	337	397	402	323	379
pH, Field	SU	NA	7.0	7.1		7.2	7.1	7.3	6.9	7.2	7.2
Appendix IV											
Antimony	ug/L	6	1	1	< 1	1	1	1	1	1	1
Arsenic	ug/L	10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Barium	ug/L	2,000	216	200	195	167	151	167	172	121	142
Beryllium	ug/L	4	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	< 1	41	56	< 1	2	< 1	< 1	< 1	1
Cobalt	ug/L	15	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	15	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	40	19	20	21	19	20	20	18	18	18
Mercury	ug/L	2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	100	5	17	19	26	26	27	27	18	23
Radium-226/228	pCi/L	5.00	0.883	0.496	0.780	0.661	0.485	1.26	< 0.640	< 0.517	0.548
Selenium	ug/L	50	68	6	6	20	10	16	6	11	7
Thallium	ug/L	2	< 2	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

pCi/L - picocuries per liter; SU - standard units; pH is a field parameter.

-- - not analyzed.

GWPS - Groundwater Protection Standard. GWPS is the higher of the Maximum Contaminant Level/Regional

Screening Level and Upper Tolerance Limit as established in TRC's Technical Memorandum dated October 15, 2018.

Bold value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR Rules.

- (1) JHC-MW-15008 was decommissioned on June 24, 2019. Replacement well JHC-MW-15008R was installed on June 25, 2019.
- (2) Not sampled; insufficient amount of groundwater present to collect sample.
- (3) JHCW-MW-15007, JHC-MW-15009, and JHC-MW-15011 were decommissioned in July 2021. Replacement wells JHC-MW-15007R, JHC-MW-15009R, and JHC-MW-15011R were installed on July 20-22, 2021.

Comparison of Groundwater Sampling Results to Groundwater Protection Standards for Statistical Evaluation JH Campbell Pond A – RCRA CCR Monitoring Program West Olive, Michigan

									vest Olive, Ivilo										
	S	Sample Location:			JI	HC-MW-15009	9 ⁽³⁾							JHC-MW-	-15009R ⁽³⁾				
		Sample Date:	4/24/2019	4/24/2019	10/9/2019 ⁽²⁾	4/14/2020	4/14/2020	10/22/2020(2)	4/13/2021 ⁽²⁾	10/21/2021	4/13/2022	10/18/2022	10/18/2022	4/10/2023	4/10/2023	10/17/2023	10/17/2023	4/16/2024	4/16/2024
Constituent	Unit	GWPS																	
Appendix III				Field Dup			Field Dup						Field Dup		Field Dup		Field Dup		Field Dup
Boron	ug/L	NA	200	190		874	881			1,680	1,670	928	969	1,010	1,010	1,230	1,250	2,120	2,080
Calcium	mg/L	NA	92	89		78.7	79.9			58.7	64.8	58.8	59.4	90.8	89.4	74.1	71.5	85.6	83.6
Chloride	mg/L	NA	17	16		6.95	6.78			12.1	15.4	13.3	13.3	9.24	9.88	11.2	11.2	7.46	7.74
Fluoride	ug/L	NA	< 1,000	< 1,000		< 1,000	< 1,000			< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	NA	130	130		49.1	49.9			25.7	38.3	28.1	28.3	57.8	57.9	33.1	32.9	55.7	58.8
Total Dissolved Solids	mg/L	NA	430	440		354	341			301	292	298	271	368	380	318	310	392	427
pH, Field	SU	NA	7.4			7.2				7.1	6.9	7.2		6.7		6.9		6.9	
Appendix IV																			
Antimony	ug/L	6	< 1.0	< 1.0		1	1			< 1	< 1	1	< 1	2	< 1	< 1	< 1	< 1	< 1
Arsenic	ug/L	10	< 1.0	< 1.0		< 1	< 1			1	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Barium	ug/L	2,000	360	360		307	298			286	206	225	234	281	282	273	270	342	332
Beryllium	ug/L	4	< 1.0	< 1.0		< 1	< 1			< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	< 0.20	< 0.20		< 0.2	< 0.2			< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	17	14		1	1			< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1	1
Cobalt	ug/L	15	< 6.0	< 6.0		< 15	< 15			< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	< 1,000	< 1,000		< 1,000	< 1,000			< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	15	< 1.0	< 1.0		< 1	< 1			< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	40	11	11		14	14			15	15	12	12	14	15	13	13	16	16
Mercury	ug/L	2	< 0.20	< 0.20		< 0.2	< 0.2			< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	100	5.7	5.6		< 5	< 5			5	9	10	9	19	20	9	9	7	7
Radium-226/228	pCi/L	5.00	1.02	0.798		0.967	0.767			0.728	0.622	< 0.465	< 0.520	< 0.610	< 0.490	0.969	< 0.491	1.10	< 0.589
Selenium	ug/L	50	61	63		77	79			62	7	58	64	64	63	155	155	242	238

< 2

< 2

< 2

< 2

< 2

< 2

< 2

< 2

< 2

< 2

Notes:

Thallium

ug/L - micrograms per liter; mg/L - milligrams per liter.

pCi/L - picocuries per liter; SU - standard units; pH is a field parameter.

ug/L

-- - not analyzed.

GWPS - Groundwater Protection Standard. GWPS is the higher of the Maximum Contaminant Level/Regional

Screening Level and Upper Tolerance Limit as established in TRC's Technical Memorandum dated October 15, 2018.

Bold value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR Rules.

< 2.0

< 2.0

< 2

< 2

All metals were analyzed as total unless otherwise specified.

- (1) JHC-MW-15008 was decommissioned on June 24, 2019. Replacement well JHC-MW-15008R was installed on June 25, 2019.
- (2) Not sampled; insufficient amount of groundwater present to collect sample.
- (3) JHCW-MW-15007, JHC-MW-15009, and JHC-MW-15011 were decommissioned in July 2021. Replacement wells JHC-MW-15007R, JHC-MW-15009R, and JHC-MW-15011R were installed on July 20-22, 2021.

Page 4 of 5 July 2024

Comparison of Groundwater Sampling Results to Groundwater Protection Standards for Statistical Evaluation JH Campbell Pond A – RCRA CCR Monitoring Program

West Olive, Michigan

					VVCOL OIIVC, IVIII	·gu					
	5	Sample Location:	JHC-MW	/-15011 ⁽³⁾			JI	HC-MW-15011F	(³⁾		
		Sample Date:	10/22/2020	4/13/2021	10/21/2021	4/13/2022	4/13/2022	10/18/2022	4/11/2023	10/17/2023	4/16/2024
Constituent	Unit	GWPS									
Appendix III							Field Dup				
Boron	ug/L	NA	4,120	5,070	2,150	3,780	3,910	3,050	2,310	3,420	3,400
Calcium	mg/L	NA	122	78.7	51.0	57.6	56.2	45.5	79.1	47.2	60.2
Chloride	mg/L	NA	3.79	2.65	13.5	14.6	14.6	9.79	8.05	8.27	6.83
Fluoride	ug/L	NA	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	NA	141	113	45.0	56.6	56.3	46.2	87.5	56.7	63.9
Total Dissolved Solids	mg/L	NA	546	359	195	276	269	253	373	238	335
pH, Field	SU	NA	7.6	7.2	8.0	7.0		7.7	6.8	7.0	7.0
Appendix IV											
Antimony	ug/L	6	2	< 1	< 1	1	1	< 1	2	< 1	2
Arsenic	ug/L	10	22	13	3	7	7	11	5	7	8
Barium	ug/L	2000	430	399	131	197	203	185	342	264	382
Beryllium	ug/L	4	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	0.5	0.8	< 0.2	0.2	0.2	< 0.2	0.2	< 0.2	0.3
Chromium	ug/L	100	< 1	5	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cobalt	ug/L	15	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	15	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	40	17	14	< 10	18	19	16	23	17	23
Mercury	ug/L	2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	100	< 5	8	13	16	15	16	21	19	18
Radium-226/228	pCi/L	5.00	0.497	0.923	0.585	0.434	0.402	< 0.462	< 0.552	0.547	0.674
Selenium	ug/L	50	308	143	4	40	40	76	64	79	77
Thallium	ug/L	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2

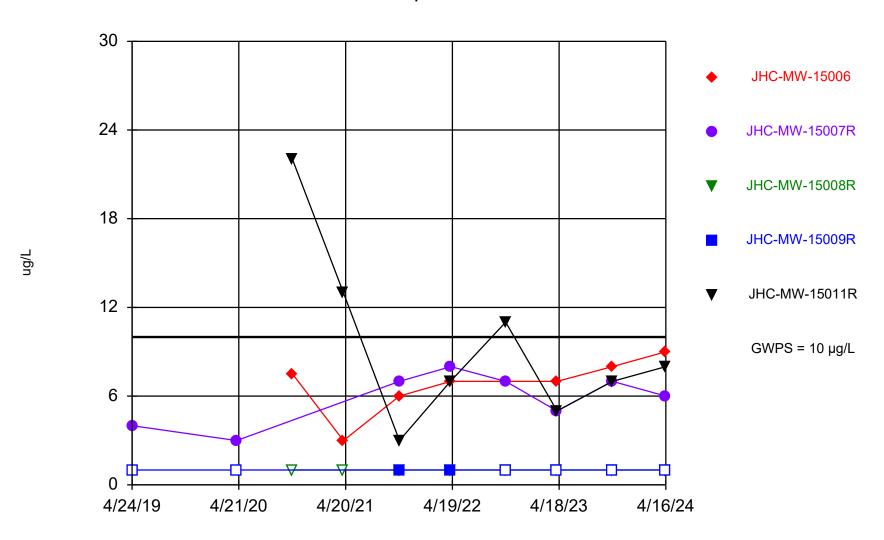
Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

pCi/L - picocuries per liter; SU - standard units; pH is a field parameter.

-- - not analyzed.

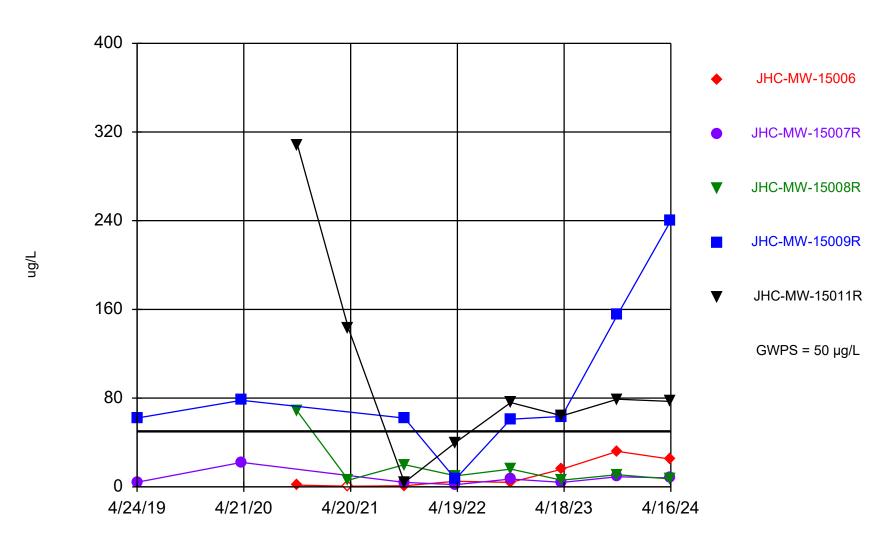
GWPS - Groundwater Protection Standard. GWPS is the higher of the Maximum Contaminant Level/Regional


Screening Level and Upper Tolerance Limit as established in TRC's Technical Memorandum dated October 15, 2018.

Bold value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR Rules.

- (1) JHC-MW-15008 was decommissioned on June 24, 2019. Replacement well JHC-MW-15008R was installed on June 25, 2019.
- (2) Not sampled; insufficient amount of groundwater present to collect sample.
- (3) JHCW-MW-15007, JHC-MW-15009, and JHC-MW-15011 were decommissioned in July 2021. Replacement wells JHC-MW-15007R, JHC-MW-15009R, and JHC-MW-15011R were installed on July 20-22, 2021.

Attachment 1 Sanitas[™] Output


Arsenic Comparison to GWPS

Time Series Analysis Run 6/11/2024 3:08 PM

Data: 2Q24_JHC_Sanitas

Selenium Comparison to GWPS

Time Series Analysis Run 6/11/2024 3:12 PM

Data: 2Q24_JHC_Sanitas

Sanitas™ v.10.0.15 Sanitas software licensed to Consumers Energy. E

Summary Report

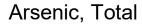
Constituent: Arsenic, Total Analysis Run 6/11/2024 3:11 PM
Data: 2Q24_JHC_Sanitas

For observations made between 4/24/2019 and 4/16/2024, a summary of the selected data set:

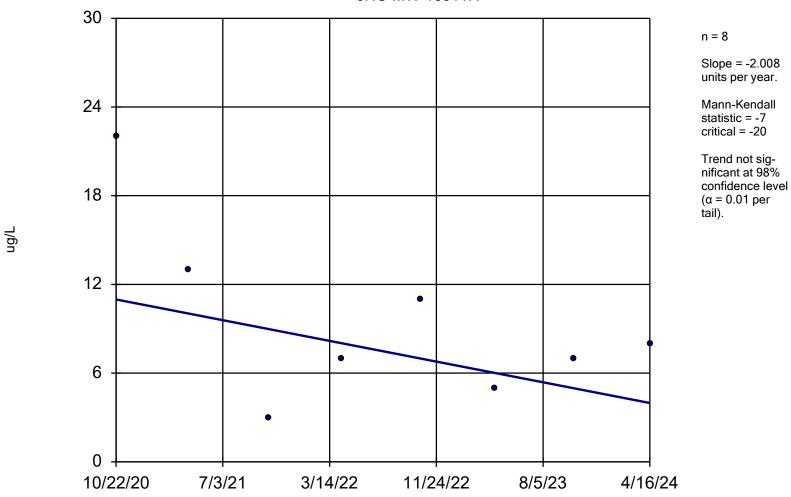
Observations = 40 NDs = 35% Wells = 5 Minimum Value = 1 Maximum Value = 22 Mean Value = 4.838 Median Value = 4.5 Standard Deviation = 4.357 Coefficient of Variation = 0.9006 Skewness = 1.627

<u>Well</u>	#Obs.	<u>NDs</u>	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	CV	<u>Skewness</u>
JHC-MW-15006	8	0%	3	9	6.813	7	1.772	0.26	-1.194
JHC-MW-15007R	8	0%	3	8	5.875	6.5	1.727	0.2939	-0.5088
JHC-MW-15008R	8	100%	1	1	1	1	0	0	NaN
JHC-MW-15009R	8	75%	1	1	1	1	0	0	NaN
JHC-MW-15011R	8	0%	3	22	9.5	7.5	5.952	0.6265	1.158

Sanitas™ v.10.0.15 Sanitas software licensed to Consumers Energy. E


Summary Report

Constituent: Selenium, Total Analysis Run 6/11/2024 3:12 PM
Data: 2Q24_JHC_Sanitas


For observations made between 4/24/2019 and 4/16/2024, a summary of the selected data set:

Observations = 40 NDs = 2% Wells = 5 Minimum Value = 1 Maximum Value = 308 Mean Value = 45.23 Median Value = 16 Standard Deviation = 65.76 Coefficient of Variation = 1.454 Skewness = 2.434

<u>Well</u>	#Obs.	<u>NDs</u>	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
JHC-MW-15006	8	12%	1	32	10.69	4.5	12.17	1.139	0.821
JHC-MW-15007R	8	0%	2	22	7.513	5.55	6.317	0.8408	1.666
JHC-MW-15008R	8	0%	6	68	18	10.5	20.81	1.156	2.024
JHC-MW-15009R	8	0%	7	240	91.06	62.75	72.57	0.7969	1.148
JHC-MW-15011R	8	0%	4	308	98.88	76.5	93.17	0.9423	1.53

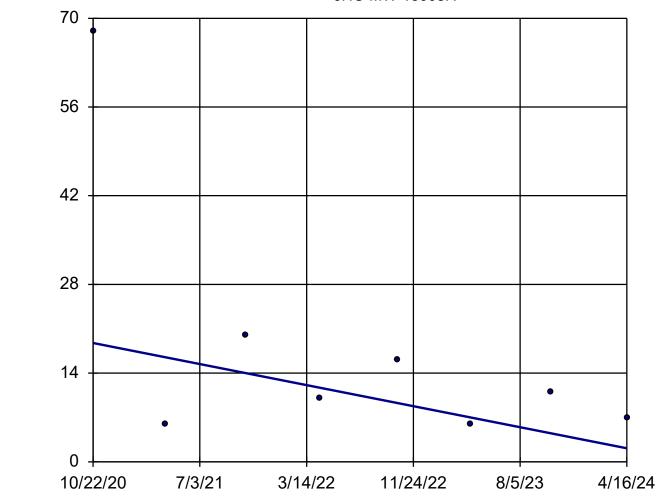
JHC-MW-15011R

Sen's Slope Estimator Analysis Run 6/11/2024 3:15 PM

Data: 2Q24_JHC_Sanitas

Selenium, Total

JHC-MW-15008R

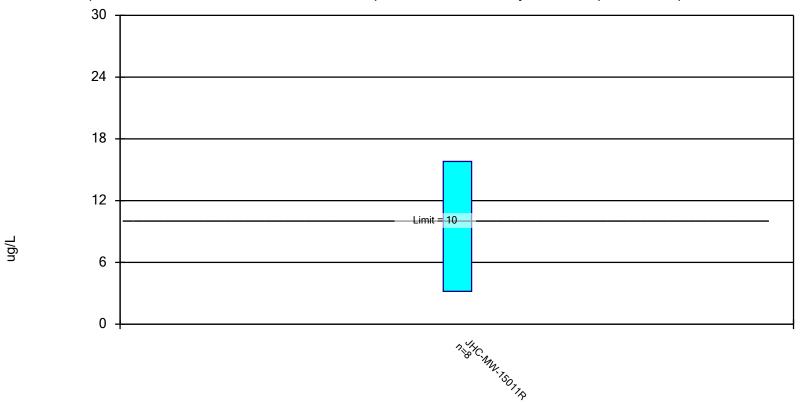

n = 8

Slope = -4.769 units per year.

Mann-Kendall statistic = -9 critical = -20

Trend not significant at 98% confidence level

 $(\alpha = 0.01 \text{ per tail}).$


Sen's Slope Estimator Analysis Run 6/11/2024 3:14 PM

Data: 2Q24_JHC_Sanitas

ng/L

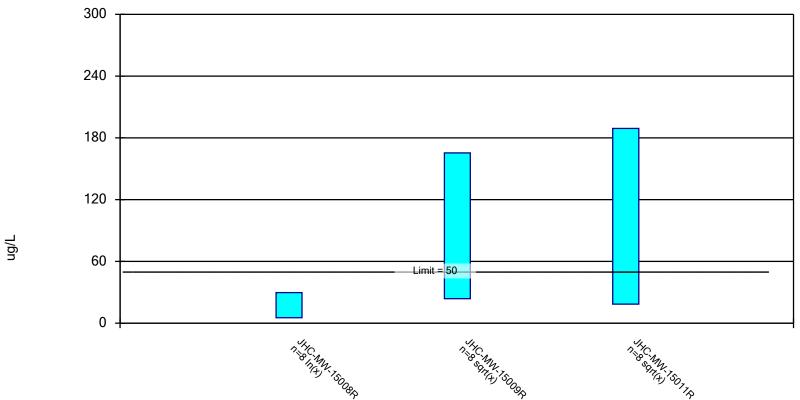
Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic, Total Analysis Run 6/11/2024 3:18 PM

Data: 2Q24_JHC_Sanitas

Confidence Interval


Constituent: Arsenic, Total (ug/L) Analysis Run 6/11/2024 3:19 PM

Data: 2Q24_JHC_Sanitas

	JHC-MW-15011R
10/22/2020	22
4/13/2021	13
10/21/2021	3
4/13/2022	7 (D)
10/18/2022	11
4/11/2023	5
10/17/2023	7
4/16/2024	8
Mean	9.5
Std. Dev.	5.952
Upper Lim.	15.81
Lower Lim.	3.191

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Selenium, Total Analysis Run 6/11/2024 3:33 PM

Data: 2Q24_JHC_Sanitas

Confidence Interval

Constituent: Selenium, Total (ug/L) Analysis Run 6/11/2024 3:33 PM

Data: 2Q24_JHC_Sanitas

	JHC-MW-15008R	JHC-MW-15009R	JHC-MW-15011R
4/24/2019		62 (D)	
4/14/2020		78 (D)	
10/22/2020	68		308
4/13/2021	6 (D)		143
10/21/2021	20	62	4
4/13/2022		7	40 (D)
4/14/2022	10		
10/18/2022	16	61 (D)	76
4/10/2023	6	63.5 (D)	
4/11/2023			64
10/17/2023	11	155 (D)	79
4/16/2024	7	240 (D)	77
Mean	18	91.06	98.88
Std. Dev.	20.81	72.57	93.17
Upper Lim.	29.64	165.4	189.1
Lower Lim.	5.286	23.77	18.5

Appendix D October 2024 Assessment Monitoring Statistical Evaluation

Date: January 30, 2025

To: Harold D. Register, Jr., Consumers Energy

From: Sarah Holmstrom, TRC

Kristin Lowery, TRC Henry Schnaidt, TRC

Project No.: 553811.0000.0000 Phase 1 Task 2

Subject: Statistical Evaluation of October 2024 Assessment Monitoring Sampling Event,

JH Campbell Bottom Ash Pond A CCR Unit, Consumers Energy Company, West

Olive, Michigan

Consumers Energy is continuing semiannual assessment monitoring in accordance with §257.95 of the CCR Rule¹ at the JH Campbell Power Plant Bottom Ash Pond A (Pond A). The second semiannual assessment monitoring event of 2024 was conducted from October 14 through 15, 2024. In accordance with §257.95, the assessment monitoring data must be compared to Groundwater Protection Standards (GWPSs) to determine whether or not Appendix IV constituents are detected at statistically significant levels above the GWPSs. GWPSs were established in accordance with §257.95(h), as detailed in the October 15, 2018 Groundwater Protection Standards technical memorandum, which was also included in the 2018 Annual Groundwater Monitoring Report (2018 Annual Report) (TRC, January 2019). The following narrative describes the methods that were employed for comparisons to the GWPSs. The results obtained and the Sanitas™ output files are included as an attachment.

The statistical evaluation of the second semiannual assessment monitoring event for 2024 indicates that no constituents are present at statistically significant levels exceeding the GWPSs in downgradient monitoring wells at the Pond A CCR Unit.

Constituent GWPS # Downgradient Wells Observed

No constituents are present at statistically significant levels above the GWPSs.

These results are generally consistent with the results of the previous assessment monitoring data statistical evaluation, with no new statistically significant levels above the GWPSs. Consumers Energy will continue to evaluate corrective measures per §257.96 and §257.97. Consumers Energy will continue executing the self-implementing groundwater compliance schedule in conformance with §257.90 - §257.98.

¹ USEPA final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) published April 17, 2015, as amended.

Assessment Monitoring Statistical Evaluation

The downgradient compliance well network at Pond A consists of five wells (JHC-MW-15006, JHC-MW-15007R, JHC-MW-15008R, JHC-MW-15009R and JHC-MW-150011R) located south and east of Pond A. As discussed in the *2019 Annual Groundwater Monitoring and Corrective Action Report and Fourth Quarter 2019 Hydrogeological Monitoring Report* for the Pond A CCR Unit dated January 2020, monitoring well JHC-MW-15008 was decommissioned and replacement monitoring well JHC-MW-15008R was installed in June 2019. As detailed in the *2021 Annual Groundwater Monitoring and Corrective Action Report, JH Campbell Power Plant, Pond A* (TRC, January 2022), monitoring wells JHC-MW-15007, JHC-MW-15009, and JHC-MW-15011 were decommissioned and replacement monitoring wells JHC-MW-15010 was removed from the monitoring program. For the purposes of statistical evaluation, the data sets from the replacement monitoring wells have been pooled with the former monitoring wells given that the wells were replaced to reset the screens at a lower elevation and data integrity was maintained before and after replacement. Use of the combined dataset is denoted with the "/R" to denote data from the original and replacement well are being used in the analysis.

Following the second semiannual assessment monitoring sampling event for 2024, compliance well data for Pond A were evaluated in accordance with the Groundwater Statistical Evaluation Plan (Stats Plan) (TRC, October 2017). An assessment monitoring program was developed to evaluate concentrations of CCR constituents present in the uppermost aquifer relative to acceptable levels (i.e. GWPSs). To evaluate whether or not a GWPS exceedance is statistically significant, the difference in concentration observed at the downgradient wells during a given assessment monitoring event compared to the GWPS must be large enough, after accounting for variability in the sample data, that the result is unlikely to have occurred merely by chance. Consistent with the Unified Guidance², the preferred method for comparisons to a fixed standard is confidence limits. Based on the number of historical observations in the representative sample population, the sample mean, the sample standard deviation, and a selected confidence level (i.e. 99 percent), an upper and lower confidence limit is calculated. The actual mean concentration of the population, with 99 percent confidence, will fall between the lower and upper confidence limits.

The concentrations observed in the downgradient wells are deemed to be a statistically significant exceedance when the 99 percent lower confidence limit of the downgradient data exceeds the GWPS. If the confidence interval straddles the GWPS (i.e. the lower confidence level is below the GWPS but the upper confidence level is above), the statistical test result indicates that there is insufficient confidence that the measured concentrations are different from the GWPS. This statistical approach is consistent with the statistical methods for assessment monitoring presented in §257.93(f) and (g). Statistical evaluation methodologies built into the CCR Rule, and numerous other federal rules, are key in determining whether or not individually measured data points represent a concentration increase over the baseline or a fixed standard (such as a GWPS in an assessment monitoring program).

For each detected Appendix IV constituent, the concentrations for each well were first compared directly to the GWPS, as shown on Table 1. Constituent-well combinations that included a direct

-

² USEPA. 2009. *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance*. Office of Conservation and Recovery. EPA 530/R-09-007.

exceedance of the GWPS within the past eight monitoring events (April 2021 through October 2024 for JHC-MW-15006, JHC-MW-15008/R, and JHC-MW-15011/R and April 2020 through October 2024 for JHC-MW-15007/R and JHC-MW-15009/R) were retained for further analysis (Attachment 1). Direct comparison GWPS exceedances included the following constituent-well combinations:

- Arsenic at JHC-MW-15006,
- Selenium at JHC-MW-15009/R; and,
- Arsenic and selenium at JHC-MW-15011/R.

Groundwater data for the constituent-well combinations with direct-comparison exceedances of a GWPS were then evaluated utilizing SanitasTM statistical software. SanitasTM is a software tool that is commercially available for performing statistical evaluation consistent with procedures outlined in the Unified Guidance. Within the SanitasTM statistical program, confidence limits were used to perform the statistical comparison of compliance data to a fixed standard. Parametric or non-parametric confidence intervals were calculated, as appropriate, for each of the CCR Appendix IV parameters using a 99 percent confidence level, i.e., a significance level (α) of 0.01. The following narrative describes the methods employed, the results obtained and the SanitasTM output files are included as an attachment.

The statistical data evaluation included the following steps:

- Review of data quality checklists for the data sets;
- Graphical representation of the monitoring data as time versus concentration by well-constituent pair;
- Outlier testing of individual data points that appear from the graphical representations as potential outliers;
- Evaluation of visual trends apparent in the graphical representations for statistical significance;
- Evaluation of percentage of non-detects for each well-constituent pair;
- Distribution of the data; and
- Calculation of the confidence intervals for each cumulative dataset.

The results of these evaluations are presented and discussed below.

Data from each round were evaluated for completeness, overall quality, and usability and were deemed appropriate for the purposes of the CCR assessment monitoring program.

Initially, the results for these well-constituent pairs were observed visually for potential outliers and trends. No outliers were apparent. A visually decreasing trend was observed for arsenic in JHC-MW-15011/R (time-series plots in Attachment 1); however, the trend was not statistically significant. Visually increasing trends were observed for arsenic in JHC-MW-15006 and selenium in JHC-MW-15009/R and JHC-MW-15011/R (time-series plots in Attachment 1). The increasing trend for arsenic in JHC-MW-15006 was statistically significant, while the increasing trends for selenium in JHC-MW-15009/R and JHC-MW-15011/R were not. Groundwater conditions are re-equilibrating following capping activities at Pond A that were completed in Summer 2019. Because hydrogeologic conditions are in the process of stabilizing, temporary trending and sporadic outlier data are not unexpected. Therefore, all data is used in the statistical evaluation.

The SanitasTM software was then used to test compliance at the downgradient monitoring wells using the confidence interval method for the most recent eight compliance events. Eight independent sampling events provide the appropriate density of data as recommended per the Unified Guidance yet are collected recently enough to provide an indication of current condition. The tests were run with a per-well significance of $\alpha = 0.01$. The software outputs are included in Attachment 1 along with data reports showing the values used for the evaluation. Non-detect data was handled in accordance with the Stats Plan for the purposes of calculating the confidence intervals.

The Sanitas[™] software generates an output that includes graphs of the parametric or non-parametric confidence intervals for each well along with notes on data transformations, as appropriate. Data distributions were as follows:

Distribution	Parameter-Well Combinations
Normal	Arsenic at JHC-MW-15006 and JHC-MW-15011/R
	Selenium at JHC-MW-15011/R
Normalized by square root transformation	Selenium at JHC-MW-15009/R

The confidence interval test compares the lower confidence limit to the GWPS. The statistical evaluation of the Appendix IV constituents shows no statistically significant exceedances of the GWPSs. Arsenic was identified at downgradient monitoring well JHC-MW-15011 at statistically significant levels exceeding the GWPS during the initial assessment monitoring event conducted in June 2018. As shown in Table 1 and Attachment 1, arsenic concentrations in this well declined in 2020 and 2021 and the lower confidence limit has been below the GWPS since the second semiannual event of 2021. Consumers Energy continues to evaluate corrective measures per §257.96 and §257.97. Consumers Energy will continue executing the self-implementing groundwater compliance schedule in conformance with §257.90 - §257.98.

Attachments

Table 1 Comparison of Groundwater Sampling Results to Groundwater Protection Standards

for Statistical Evaluation

Attachment 1 Sanitas[™] Output

Comparison of Groundwater Sampling Results to Groundwater Protection Standards for Statistical Evaluation JH Campbell Pond A – RCRA CCR Monitoring Program West Olive Michigan

				West 0	Olive, Michigan					
		Sample Location:	·	•	•	JHC-MV	V-15006	·	•	
		Sample Date:	4/13/2021	10/21/2021	4/14/2022	10/18/2022	4/11/2023	10/17/2023	4/16/2024	10/14/2024
Constituent	Unit	GWPS								
Appendix III										
Boron	ug/L	NA	288	371	676	765	670	757	609	695
Calcium	mg/L	NA	82.0	84.5	59.2	67.2	68.8	75.7	67.8	52.8
Chloride	mg/L	NA	22.9	19.6	17.0	18.3	13.3	18.3	12.5	17.0
Fluoride	ug/L	NA	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	NA	257	217	101	179	98.3	204	80.6	78.5
Total Dissolved Solids	mg/L	NA	497	485	341	458	385	552	393	308
pH, Field	SU	NA	7.7	7.8	7.8	8.3	7.8	8.2	8.0	8.5
Appendix IV										
Antimony	ug/L	6	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Arsenic	ug/L	10	3	6	7	7	7	8	9	11
Barium	ug/L	2,000	188	211	139	151	144	162	157	103
Beryllium	ug/L	4	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	3	2	1	< 1	1	< 1	2	< 1
Cobalt	ug/L	15	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	15	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	40	12	13	13	13	12	14	15	13
Mercury	ug/L	2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	100	54	48	17	24	12	19	15	30
Radium-226/228	pCi/L	5.00	0.673	0.634	0.395	0.663	< 0.879	0.643	< 0.517	0.476
Selenium	ug/L	50	< 1	1	5	4	16	32	25	5

Notes:

Thallium

ug/L - micrograms per liter; mg/L - milligrams per liter.

pCi/L - picocuries per liter; SU - standard units; pH is a field parameter.

-- - not analyzed.

GWPS - Groundwater Protection Standard. GWPS is the higher of the Maximum Contaminant Level/Regional

Screening Level and Upper Tolerance Limit as established in TRC's Technical Memorandum dated October 15, 2018.

Bold value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for

evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR Rules.

- (1) JHC-MW-15008 was decommissioned on June 24, 2019. Replacement well JHC-MW-15008R was installed on June 25, 2019.
- (2) Not sampled; insufficient amount of groundwater present to collect sample.
- (3) JHCW-MW-15007, JHC-MW-15009, and JHC-MW-15011 were decommissioned in July 2021. Replacement wells JHC-MW-15007R, JHC-MW-15009R, and JHC-MW-15011R were installed on July 20-22, 2021.

Comparison of Groundwater Sampling Results to Groundwater Protection Standards for Statistical Evaluation JH Campbell Pond A – RCRA CCR Monitoring Program West Olive Michigan

						west Olive, M	ichilgan						
	J	HC-MW-15007	,(3)	JHC-MW-15007R ⁽³⁾									
	4/14/2020	10/22/2020 ⁽²⁾	4/13/2021 ⁽²⁾	10/21/2021	10/21/2021	4/14/2022	10/18/2022	4/11/2023	10/17/2023	4/16/2024	10/14/2024		
Constituent	Unit	GWPS											
Appendix III							Field Dup						
Boron	ug/L	NA	242			956	1,000	1,370	1,350	1,290	1,630	1,900	1,500
Calcium	mg/L	NA	62.1			68.5	72.6	66.5	69.5	77.9	68.3	56.6	63.6
Chloride	mg/L	NA	14.1			13.9	14.2	11.3	12.4	13.1	17.0	13.9	17.0
Fluoride	ug/L	NA	< 1,000			< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	NA	83.0			101	104	69.3	102	143	118	88.4	91.4
Total Dissolved Solids	mg/L	NA	336			418	419	355	430	475	453	414	388
pH, Field	SU	NA	7.0			8.0		8.1	8.0	7.7	7.9	8.0	8.1
Appendix IV													
Antimony	ug/L	6	< 1			< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Arsenic	ug/L	10	3			7	7	8	7	5	7	6	6
Barium	ug/L	2,000	266			219	224	215	249	281	233	211	212
Beryllium	ug/L	4	< 1			< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	< 0.2			< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	2			1	2	2	< 1	< 1	< 1	1	< 1
Cobalt	ug/L	15	< 15			< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	< 1,000			< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	15	< 1			< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	40	14			13	13	16	14	15	14	15	15
Mercury	ug/L	2	< 0.2			< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	100	< 5			16	16	14	18	23	27	52	35
Radium-226/228	pCi/L	5.00	< 0.456			0.583	0.483	0.780	0.786	< 0.608	0.862	0.925	1.08
Selenium	ug/L	50	22			4	4	2	7	4	9	8	5
Thallium	ug/L	2	< 2			< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

pCi/L - picocuries per liter; SU - standard units; pH is a field parameter.

-- - not analyzed.

GWPS - Groundwater Protection Standard. GWPS is the higher of the Maximum Contaminant Level/Regional

Screening Level and Upper Tolerance Limit as established in TRC's Technical Memorandum dated October 15, 2018.

Bold value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for

evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR Rules.

All metals were analyzed as total unless otherwise specified.

- (1) JHC-MW-15008 was decommissioned on June 24, 2019. Replacement well JHC-MW-15008R was installed on June 25, 2019.
- (2) Not sampled; insufficient amount of groundwater present to collect sample.
- (3) JHCW-MW-15007, JHC-MW-15009, and JHC-MW-15011 were decommissioned in July 2021. Replacement wells JHC-MW-15007R, JHC-MW-15009R, and JHC-MW-15011R were installed on July 20-22, 2021.

TRC | Consumers Energy

Comparison of Groundwater Sampling Results to Groundwater Protection Standards for Statistical Evaluation JH Campbell Pond A – RCRA CCR Monitoring Program

West Olive, Michigan

	JHC-MW-15008R ⁽¹⁾											
	Sample Date:			4/13/2021	10/21/2021	4/14/2022	10/18/2022	4/10/2023	10/17/2023	4/16/2024	10/14/2024	10/14/2024
Constituent	Unit	GWPS										
Appendix III				Field Dup								Field Dup
Boron	ug/L	NA	352	360	786	1,320	1,680	1,300	1,260	1,190	1,780	1,840
Calcium	mg/L	NA	85.4	87.0	77.2	61.6	71.6	75.7	52.9	56.0	62.8	62.3
Chloride	mg/L	NA	17.2	17.1	15.7	12.2	13.6	13.4	15.5	14.7	14.4	14.3
Fluoride	ug/L	NA	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	NA	185	186	112	80.3	85.3	107	67	80.2	98.5	98.7
Total Dissolved Solids	mg/L	NA	517	512	443	337	397	402	323	379	380	372
pH, Field	SU	NA	7.1	-	7.2	7.1	7.3	6.9	7.2	7.2	7.3	
Appendix IV												
Antimony	ug/L	6	1	< 1	1	1	1	1	1	1	1	1
Arsenic	ug/L	10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Barium	ug/L	2,000	200	195	167	151	167	172	121	142	117	116
Beryllium	ug/L	4	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	41	56	< 1	2	< 1	< 1	< 1	1	1	< 1
Cobalt	ug/L	15	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	15	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	40	20	21	19	20	20	18	18	18	19	19
Mercury	ug/L	2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	100	17	19	26	26	27	27	18	23	27	27
Radium-226/228	pCi/L	5.00	0.496	0.780	0.661	0.485	1.26	< 0.640	< 0.517	0.548	< 0.619	0.991
Selenium	ug/L	50	6	6	20	10	16	6	11	7	12	12
Thallium	ug/L	2	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

pCi/L - picocuries per liter; SU - standard units; pH is a field parameter.

-- - not analyzed.

GWPS - Groundwater Protection Standard. GWPS is the higher of the Maximum Contaminant Level/Regional

Screening Level and Upper Tolerance Limit as established in TRC's Technical Memorandum dated October 15, 2018.

Bold value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for

evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR Rules.

- (1) JHC-MW-15008 was decommissioned on June 24, 2019. Replacement well JHC-MW-15008R was installed on June 25, 2019.
- (2) Not sampled; insufficient amount of groundwater present to collect sample.
- (3) JHCW-MW-15007, JHC-MW-15009, and JHC-MW-15011 were decommissioned in July 2021. Replacement wells JHC-MW-15007R, JHC-MW-15009R, and JHC-MW-15011R were installed on July 20-22, 2021.

Comparison of Groundwater Sampling Results to Groundwater Protection Standards for Statistical Evaluation JH Campbell Pond A – RCRA CCR Monitoring Program

							•	rest Olive, Mici	ngun								
		Sample Location:	on: JHC-MW-15009 ⁽³⁾			_	JHC-MW-15009R ⁽³⁾										
		Sample Date:	4/14/2020	4/14/2020	10/22/2020 ⁽²⁾	4/13/2021 ⁽²⁾	10/21/2021	4/13/2022	10/18/2022	10/18/2022	4/10/2023	4/10/2023	10/17/2023	10/17/2023	4/16/2024	4/16/2024	10/14/2024
Constituent	Unit	GWPS															
Appendix III				Field Dup						Field Dup		Field Dup		Field Dup		Field Dup	
Boron	ug/L	NA	874	881			1,680	1,670	928	969	1,010	1,010	1,230	1,250	2,120	2,080	1,940
Calcium	mg/L	NA	78.7	79.9			58.7	64.8	58.8	59.4	90.8	89.4	74.1	71.5	85.6	83.6	59.9
Chloride	mg/L	NA	6.95	6.78			12.1	15.4	13.3	13.3	9.24	9.88	11.2	11.2	7.46	7.74	13.6
Fluoride	ug/L	NA	< 1,000	< 1,000			< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	NA	49.1	49.9			25.7	38.3	28.1	28.3	57.8	57.9	33.1	32.9	55.7	58.8	28.4
Total Dissolved Solids	mg/L	NA	354	341			301	292	298	271	368	380	318	310	392	427	264
pH, Field	SU	NA	7.2				7.1	6.9	7.2		6.7		6.9		6.9		7.0
Appendix IV																	
Antimony	ug/L	6	1	1			< 1	< 1	1	< 1	2	< 1	< 1	< 1	< 1	< 1	< 1
Arsenic	ug/L	10	< 1	< 1			1	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Barium	ug/L	2,000	307	298			286	206	225	234	281	282	273	270	342	332	249
Beryllium	ug/L	4	< 1	< 1			< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	< 0.2	< 0.2			< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	1	1			< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1	1	< 1
Cobalt	ug/L	15	< 15	< 15			< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	< 1,000	< 1,000			< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	15	< 1	< 1			< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	40	14	14			15	15	12	12	14	15	13	13	16	16	12
Mercury	ug/L	2	< 0.2	< 0.2			< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	100	< 5	< 5			5	9	10	9	19	20	9	9	7	7	9
Radium-226/228	pCi/L	5.00	0.967	0.767			0.728	0.622	< 0.465	< 0.520	< 0.610	< 0.490	0.969	< 0.491	1.10	< 0.589	0.823
Selenium	ug/L	50	77	79			62	7	58	64	64	63	155	155	242	238	80
Thallium	ug/L	2	< 2	< 2			< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

pCi/L - picocuries per liter; SU - standard units; pH is a field parameter.

-- - not analyzed.

 ${\sf GWPS-Groundwater\ Protection\ Standard.\ \ GWPS\ is\ the\ higher\ of\ the\ Maximum\ Contaminant\ Level/Regional}$

Screening Level and Upper Tolerance Limit as established in TRC's Technical Memorandum dated October 15, 2018.

Bold value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR Rules.

- (1) JHC-MW-15008 was decommissioned on June 24, 2019. Replacement well JHC-MW-15008R was installed on June 25, 2019.
- (2) Not sampled; insufficient amount of groundwater present to collect sample.
- (3) JHCW-MW-15007, JHC-MW-15009, and JHC-MW-15011 were decommissioned in July 2021. Replacement wells JHC-MW-15007R, JHC-MW-15009R, and JHC-MW-15011R were installed on July 20-22, 2021.

Comparison of Groundwater Sampling Results to Groundwater Protection Standards for Statistical Evaluation JH Campbell Pond A – RCRA CCR Monitoring Program

West Olive, Michigan

West Onlye, Wildingsin													
	Ş	Sample Location:	JHC-MW-15011 ⁽³⁾	JHC-MW-15011 ⁽³⁾ JHC-MW-15011R ⁽³⁾									
		Sample Date:	4/13/2021	10/21/2021	4/13/2022	4/13/2022	10/18/2022	4/11/2023	10/17/2023	4/16/2024	10/14/2024		
Constituent	Unit	GWPS											
Appendix III						Field Dup							
Boron	ug/L	NA	5,070	2,150	3,780	3,910	3,050	2,310	3,420	3,400	3,800		
Calcium	mg/L	NA	78.7	51.0	57.6	56.2	45.5	79.1	47.2	60.2	47.6		
Chloride	mg/L	NA	2.65	13.5	14.6	14.6	9.79	8.05	8.27	6.83	6.60		
Fluoride	ug/L	NA	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000		
Sulfate	mg/L	NA	113	45.0	56.6	56.3	46.2	87.5	56.7	63.9	53.7		
Total Dissolved Solids	mg/L	NA	359	195	276	269	253	373	238	335	225		
pH, Field	SU	NA	7.2	8.0	7.0		7.7	6.8	7.0	7.0	6.9		
Appendix IV													
Antimony	ug/L	6	< 1	< 1	1	1	< 1	2	< 1	2	< 1		
Arsenic	ug/L	10	13	3	7	7	11	5	7	8	5		
Barium	ug/L	2000	399	131	197	203	185	342	264	382	294		
Beryllium	ug/L	4	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
Cadmium	ug/L	5	0.8	< 0.2	0.2	0.2	< 0.2	0.2	< 0.2	0.3	< 0.2		
Chromium	ug/L	100	5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
Cobalt	ug/L	15	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6		
Fluoride	ug/L	4,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000		
Lead	ug/L	15	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
Lithium	ug/L	40	14	< 10	18	19	16	23	17	23	17		
Mercury	ug/L	2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2		
Molybdenum	ug/L	100	8	13	16	15	16	21	19	18	11		
Radium-226/228	pCi/L	5.00	0.923	0.585	0.434	0.402	< 0.462	< 0.552	0.547	0.674	< 0.687		
Selenium	ug/L	50	143	4	40	40	76	64	79	77	60		
Thallium	ug/L	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2		

Notes:

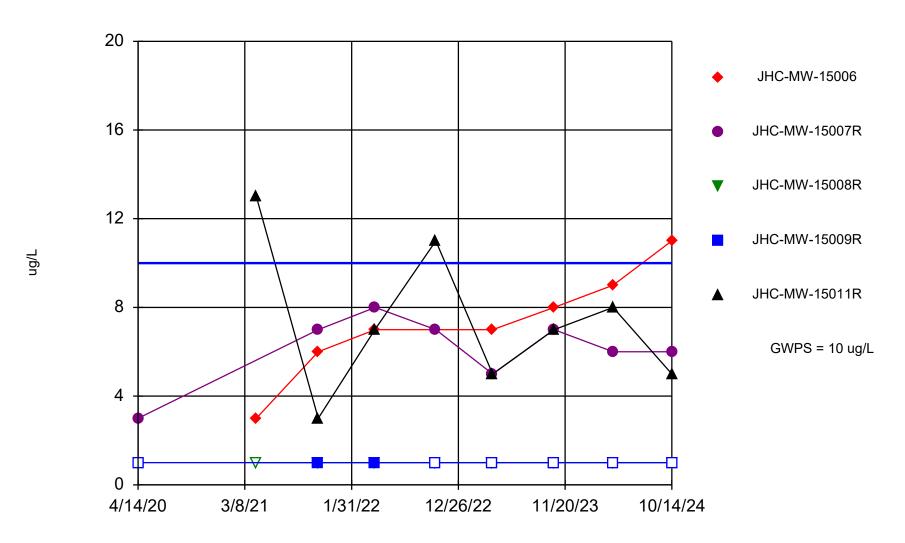
ug/L - micrograms per liter; mg/L - milligrams per liter.

pCi/L - picocuries per liter; SU - standard units; pH is a field parameter.

-- - not analyzed.

GWPS - Groundwater Protection Standard. GWPS is the higher of the Maximum Contaminant Level/Regional

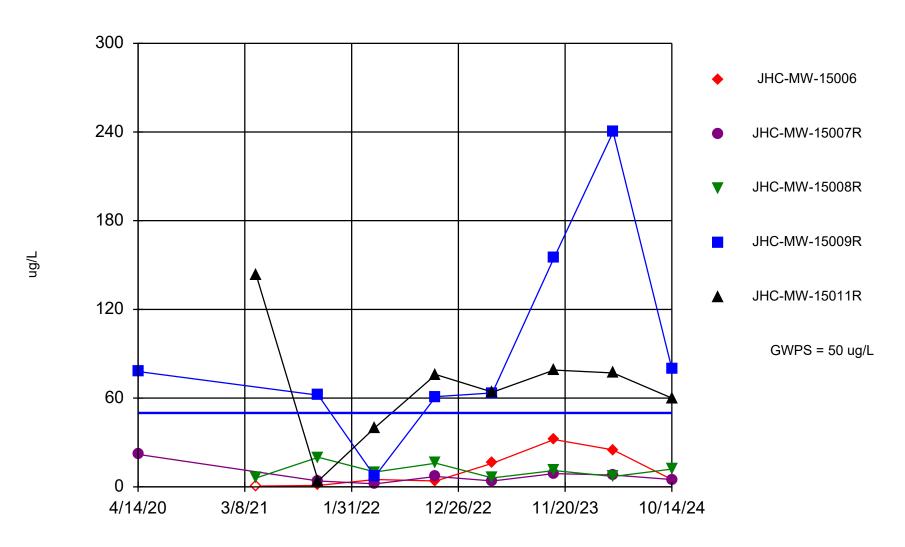
Screening Level and Upper Tolerance Limit as established in TRC's Technical Memorandum dated October 15, 2018.


Bold value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for

evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR Rules.

- (1) JHC-MW-15008 was decommissioned on June 24, 2019. Replacement well JHC-MW-15008R was installed on June 25, 2019.
- (2) Not sampled; insufficient amount of groundwater present to collect sample.
- (3) JHCW-MW-15007, JHC-MW-15009, and JHC-MW-15011 were decommissioned in July 2021. Replacement wells JHC-MW-15007R, JHC-MW-15009R, and JHC-MW-15011R were installed on July 20-22, 2021.

Attachment 1 Sanitas[™] Output


Arsenic Comparison to GWPS

Time Series Analysis Run 12/3/2024 10:05 PM

Client: Consumers Energy Data: 4Q24_JHC_Sanitas

Selenium Comparison to GWPS

Time Series Analysis Run 12/3/2024 10:08 PM

Client: Consumers Energy Data: 4Q24_JHC_Sanitas

Summary Report

Constituent: Arsenic, Total Analysis Run 12/3/2024 10:06 PM Client: Consumers Energy Data: 4Q24_JHC_Sanitas

For observations made between 4/14/2020 and 10/14/2024, a summary of the selected data set:

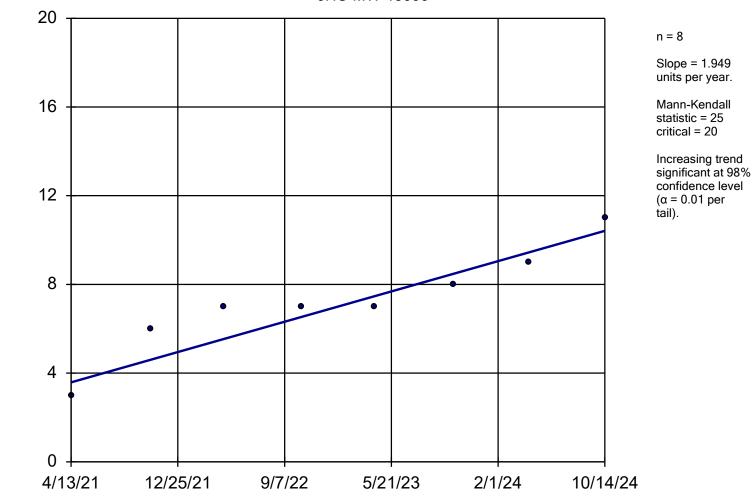
Observations = 40 NDs = 35% Wells = 5 Minimum Value = 1 Maximum Value = 13 Mean Value = 4.55 Median Value = 5 Standard Deviation = 3.486 Coefficient of Variation = 0.7661 Skewness = 0.4607

<u>Well</u>	#Obs.	<u>NDs</u>	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	CV	<u>Skewness</u>
JHC-MW-15006	8	0%	3	11	7.25	7	2.315	0.3192	-0.2494
JHC-MW-15007R	8	0%	3	8	6.125	6.5	1.553	0.2535	-0.9525
JHC-MW-15008R	8	100%	1	1	1	1	0	0	NaN
JHC-MW-15009R	8	75%	1	1	1	1	0	0	NaN
JHC-MW-15011R	8	0%	3	13	7.375	7	3.292	0.4464	0.4931

Summary Report

Constituent: Selenium, Total Analysis Run 12/3/2024 10:10 PM Client: Consumers Energy Data: 4Q24_JHC_Sanitas

For observations made between 4/14/2020 and 10/14/2024, a summary of the selected data set:

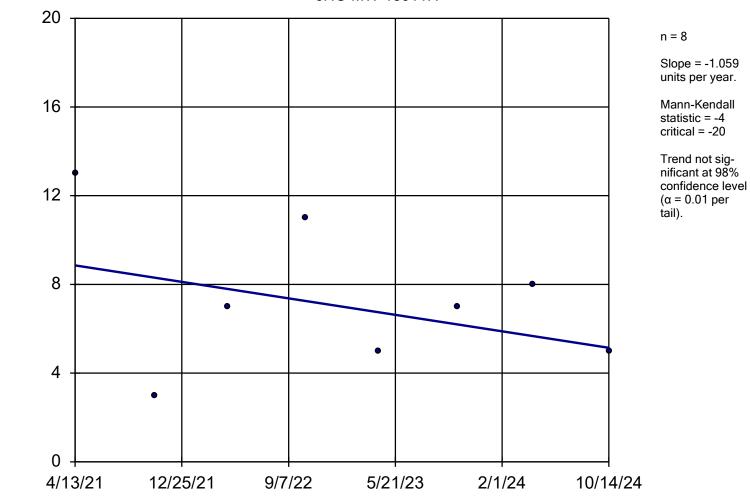

Observations = 40 NDs = 2% Wells = 5 Minimum Value = 1 Maximum Value = 240 Mean Value = 38.19 Median Value = 14 Standard Deviation = 50.38 Coefficient of Variation = 1.319

Skewness	=	2.	158
----------	---	----	-----

<u>Well</u>	#Obs.	<u>NDs</u>	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
JHC-MW-15006	8	12%	1	32	11.13	5	11.85	1.065	0.8249
JHC-MW-15007R	8	0%	2	22	7.625	6	6.255	0.8203	1.673
JHC-MW-15008R	8	0%	6	20	11	10.5	4.986	0.4532	0.6654
JHC-MW-15009R	8	0%	7	240	93.31	70.75	71.81	0.7696	1.093
JHC-MW-15011R	8	0%	4	143	67.88	70	39.37	0.5801	0.3599

Arsenic, Total

JHC-MW-15006

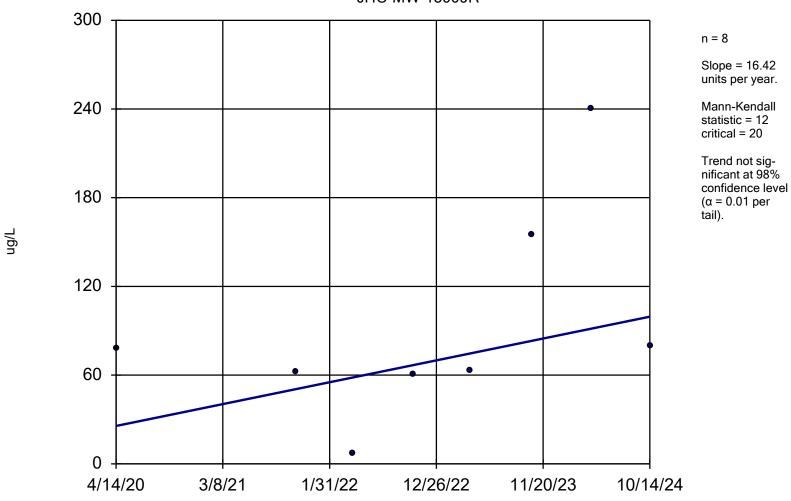

Sen's Slope Estimator Analysis Run 12/3/2024 10:06 PM Client: Consumers Energy Data: 4Q24_JHC_Sanitas

ng/L

ng/L

JHC-MW-15011R

Sen's Slope Estimator Analysis Run 12/3/2024 10:07 PM Client: Consumers Energy Data: 4Q24_JHC_Sanitas

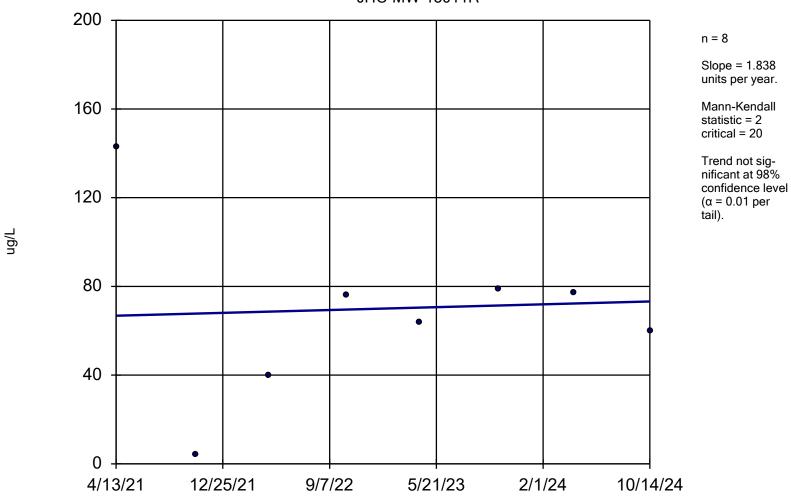

Selenium, Total

JHC-MW-15009R

n = 8

Mann-Kendall statistic = 12

 $(\alpha = 0.01 \text{ per})$ tail).



Sen's Slope Estimator Analysis Run 12/3/2024 10:10 PM

Client: Consumers Energy Data: 4Q24_JHC_Sanitas

Selenium, Total

JHC-MW-15011R

Sen's Slope Estimator Analysis Run 12/3/2024 10:10 PM Client: Consumers Energy Data: 4Q24_JHC_Sanitas

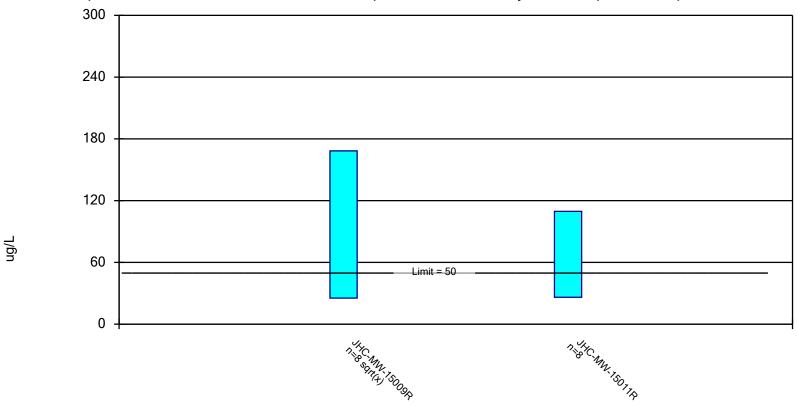
Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic, Total Analysis Run 12/3/2024 10:13 PM

Client: Consumers Energy Data: 4Q24_JHC_Sanitas

Confidence Interval


Constituent: Arsenic, Total (ug/L) Analysis Run 12/3/2024 10:14 PM

Client: Consumers Energy Data: 4Q24_JHC_Sanitas

	JHC-MW-15006	JHC-MW-15011R
4/13/2021	3	13
10/21/2021	6	3
4/13/2022		7 (D)
4/14/2022	7	
10/18/2022	7	11
4/11/2023	7	5
10/17/2023	8	7
4/16/2024	9	8
10/14/2024	11	5
Mean	7.25	7.375
Std. Dev.	2.315	3.292
Upper Lim.	9.703	10.86
Lower Lim.	4.797	3.885

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Selenium, Total Analysis Run 12/3/2024 10:13 PM

Client: Consumers Energy Data: 4Q24_JHC_Sanitas

Confidence Interval

Constituent: Selenium, Total (ug/L) Analysis Run 12/3/2024 10:14 PM

Client: Consumers Energy Data: 4Q24_JHC_Sanitas

	JHC-MW-15009R	JHC-MW-15011R
4/14/2020	78 (D)	
4/13/2021		143
10/21/2021	62	4
4/13/2022	7	40 (D)
10/18/2022	61 (D)	76
4/10/2023	63.5 (D)	
4/11/2023		64
10/17/2023	155 (D)	79
4/16/2024	240 (D)	77
10/14/2024	80	60
Mean	93.31	67.88
Std. Dev.	71.81	39.37
Upper Lim.	168.3	109.6
Lower Lim.	25.32	26.14

Appendix E Semiannual Progress Report

January 30, 2025

Subject:

Semiannual Progress Report - Selection of Remedy
JH Campbell Pond A CCR Unit

This Semiannual Progress Report, prepared as a requirement of §257.97(a) of 40 CFR Parts 257 and 261, Disposal of Coal Combustion Residuals from Electric Utilities, under subtitle D of the Resource Conservation and Recovery Act (RCRA), also known as the Coal Combustion Residuals (CCR) Rule, describes progress toward selecting and designing remedies for the Pond A CCR unit that triggered Assessment of Corrective Measures (ACM) under the CCR Rule at the JH Campbell Solid Waste Disposal Area. Based on the schedule of self-implementation prescribed in the CCR Rule, a progress report is required to be prepared semiannually upon completion of the Assessment of Corrective Measures Report until the remedy is selected. It is noteworthy that remedy selection for the Pond A, prescribed by the CCR Rule, is being undertaken in coordination with a Michigan Department of Environment, Great Lakes, and Energy (EGLE) Consent Agreement 115-01-2018, which was executed on December 28, 2018.

Consumers Energy (CE) reported statistically significant exceedances above the groundwater protection standard (GWPS) for a single Appendix IV constituent, arsenic, in the "Notification of Appendix IV Constituent Exceeding Groundwater Protection Standard per §257.95(g)" (Consumers Energy Company, January 2019).

Unit with GWPS Exceedance	Constituent	# of Downgradient Wells Observed
Pond A	Arsenic	1 of 6

Subsequently, the Assessment of Corrective Measures Report (TRC, September 2019) was completed on September 11, 2019 for Pond A. Five remedial approaches were evaluated and presented based on source control by construction of a final cover and certifying the closure in place for Pond A.

Semi-annual progress reports have been completed by placing the document in the operating record and making it available on the CE public-facing website starting with the 2019 Annual Groundwater Monitoring and Corrective Action Report and Fourth Quarter Hydrogeological Monitoring Report (TRC, 2020).

Assessment Activities

CE closed Pond A according to the "JH Campbell Generating Facility Pond A Closure Plan, West Olive, Michigan" (Golder, October 2016) and an updated closure plan detailing the final cover system was submitted to EGLE in February 2019. The state closure certification as required by Paragraph 4.2 of Consent Agreement WMRPD No. 115-01-2018 was approved by EGLE on November 25, 2019.

Increases in Appendix III constituents (e.g. boron) at multiple well locations and direct exceedances of the selenium GWPS in JHC-MW-15011R, JHC-MW-15009R, and JHC-MW-15008R that have not yet resulted in a statistically significant exceedance suggest a detectable influence from the immediately adjacent, upgradient, closed, pre-existing CCR units on-site. The closed, pre-existing units are not regulated under the RCRA CCR Rule, but remedial action is being taken under Consent Agreement WMRPD No. 115-01-2018. A remedial action plan (RAP) for these units was submitted to EGLE on September 30, 2021. In a letter sent June 10, 2022, CE committed to revising elements of the RAP based on comments received and ongoing discussion with EGLE.

Conclusions

Arsenic at JHC-MW-15011/R continues to demonstrate attenuation in visual downward concentration trends. Nature and extent sampling data indicate that arsenic is not detected above the GWPS immediately downgradient from Pond A.

Groundwater monitoring data since the installation of the final cover indicates an observable influence from immediately adjacent, upgradient, closed, pre-existing units. Remedial action for the upgradient units is being taken under Consent Agreement WMRPD No. 115-01-2018.

Remedy Selection Process

The ACM Report identified a final cover system as the primary corrective action for Pond A, but also considered five technically feasible groundwater management alternatives to address the potential for residual arsenic. The first alternative was to monitor post-source control groundwater concentration improvements (e.g. no additional measures required once source control was completed), but four other alternatives were retained in the event GWPS could not be achieved for all constituents in all monitoring wells in the groundwater monitoring system.

The remedy for Pond A will be formally selected per §257.97 once the selected option is reviewed and commented on by EGLE and a public meeting is conducted at least 30-days prior to the final selection as required under §257.96(e).

References

Consumers Energy Company. January 14, 2019. Notification of Appendix IV Constituent Exceeding Groundwater Protection Standard per §257.95(g), JH Campbell Pond A CCR Unit.

Golder Associates. October 2016. JH Campbell Generating Facility Pond A Closure Plan, West Olive, Michigan. Prepared for Consumers Energy Company.

TRC Environmental Corporation. September 2019. Assessment of Corrective Measures, Consumers Energy Company JH Campbell Ponds 1-2 North and 1-2 South and Pond A Coal Combustion Residual Units. Prepared for Consumers Energy Company.